Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 039801    DOI: 10.1088/0256-307X/38/3/039801
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Klein–Nishina Effect and the Cosmic Ray Electron Spectrum
Kun Fang1, Xiao-Jun Bi1,2*, Su-Jie Lin3, and Qiang Yuan4,5,6*
1Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China
4Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
5School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
6Center for High Energy Physics, Peking University, Beijing 100871, China
Cite this article:   
Kun Fang, Xiao-Jun Bi, Su-Jie Lin et al  2021 Chin. Phys. Lett. 38 039801
Download: PDF(560KB)   PDF(mobile)(555KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Radiative energy losses are very important in regulating the cosmic ray electron and/or positron (CRE) spectrum during their propagation in the Milky Way. Particularly, the Klein–Nishina (KN) effect of the inverse Compton scattering (ICS) results in less efficient energy losses of high-energy electrons, which is expected to leave imprints on the propagated electron spectrum. It has been proposed that the hardening of CRE spectra around 50 GeV observed by Fermi-LAT, AMS-02, and DAMPE could be due to the KN effect. We show in this work that the transition from the Thomson regime to the KN regime of the ICS is actually quite smooth compared with the approximate treatment adopted in some previous works. As a result, the observed spectral hardening of CREs cannot be explained by the KN effect. It means that an additional hardening of the primary electrons spectrum is needed. We also provide a parameterized form for the accurate calculation of the ICS energy-loss rate in a wide energy range.
Received: 25 December 2020      Published: 06 February 2021
PACS:  98.70.Sa (Cosmic rays (including sources, origin, acceleration, and interactions))  
  98.58.Mj (Supernova remnants)  
  95.30.Gv (Radiation mechanisms; polarization)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0400203 and 2016YFA0400204), the National Natural Science Foundation of China (Grant Nos. 11722328, U1738205, U1738203, 11851303 and 11851305), and the Program for Innovative Talents and Entrepreneur in Jiangsu.
Online First Date: 06 February 2021   
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/3/039801       OR      https://cpl.iphy.ac.cn/Y2021/V38/I3/039801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Fang
Xiao-Jun Bi
Su-Jie Lin
and Qiang Yuan
[1] Chang J et al. 2008 Nature 456 362
[2] Aharonian F et al. 2008 Phys. Rev. Lett. 101 261104
[3] Abdo A A et al. 2009 Phys. Rev. Lett. 102 181101
[4] Adriani O et al. 2011 Phys. Rev. Lett. 106 201101
[5] Aguilar M et al. 2014 Phys. Rev. Lett. 113 221102
[6] Collaboration D A M P E et al. 2017 Nature 552 63
[7] Adriani O et al. 2017 Phys. Rev. Lett. 119 181101
[8] Abdollahi S et al. 2017 Phys. Rev. D 95 082007
[9] Aguilar M et al. 2019 Phys. Rev. Lett. 122 041102
[10] Aguilar M et al. 2019 Phys. Rev. Lett. 122 101101
[11] Adriani O et al. 2009 Nature 458 607
[12] Aguilar M et al. 2013 Phys. Rev. Lett. 110 141102
[13] Yuan Q, Feng L 2018 Sci. Chin.: Phys. Mech. Astron. 61 101002
[14] Yuan Q and Bi X J 2013 Phys. Lett. B 727 1
[15] Cholis I and Hooper D 2013 Phys. Rev. D 88 023013
[16] Lin S J, Yuan Q and Bi X J 2015 Phys. Rev. D 91 063508
[17] Li X, Shen Z Q, Lu B Q, Dong T K, Fan Y Z, Feng L, Liu S M and Chang J 2015 Phys. Lett. B 749 267
[18] Atoyan A M, Aharonian F A and Völk H J 1995 Phys. Rev. D 52 3265
[19] Strong A W and Moskalenko I V 1998 Astrophys. J. 509 212
[20] Blumenthal G R and Gould R J 1970 Rev. Mod. Phys. 42 237
[21] Evoli C, Blasi P, Amato E and Aloisio R 2020 Phys. Rev. Lett. 125 051101
[22] Schlickeiser R and Ruppel J 2010 New J. Phys. 12 033044
[23] Kobayashi T, Komori Y, Yoshida K and Nishimura J 2004 Astrophys. J. 601 340
[24] Delahaye T, Lavalle J, Lineros R, Donato F and Fornengo N 2010 Astron. & Astrophys. 524 A51
[25] Stawarz L, Petrosian V and Blandford R D 2010 Astrophys. J. 710 236
[26] Blies P and Schlickeiser R 2012 Astrophys. J. 751 71
[27] Jones F C 1968 Phys. Rev. 167 1159
[28] Fixsen D J 2009 Astrophys. J. 707 916
[29] Moderski R, Sikora M, Coppi P S and Aharonian F 2005 Mon. Not. R. Astron. Soc. 363 954
[30] Agaronyan F A and Ambartsumyan A S 1986 Astrophysics 23 650
[31] Evoli C, Amato E, Blasi P and Aloisio R 2020 arXiv:2010.11955 [astro-ph.HE]
[32] Yuan Q, Lin S J, Fang K and Bi X J 2017 Phys. Rev. D 95 083007
[33] Green D A 2015 Mon. Not. R. Astron. Soc. 454 1517
[34] Shen C S 1970 Astrophys. J. Lett. 162 L181
[35]Aharonian F A, Atoyan A M and Voelk H J 1995 Astron. & Astrophys. 294 L41
[36] Di Mauro M, Donato F, Fornengo N, Lineros R and Vittino A 2014 J. Cosmol. Astropart. Phys. 2014(4) 006
[37] Fang K, Wang B B, Bi X J, Lin S J and Yin P F 2017 Astrophys. J. 836 172
Viewed
Full text


Abstract