Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 037401    DOI: 10.1088/0256-307X/38/3/037401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$
Mebrouka Boubeche1†, Jia Yu2†, Li Chushan2, Wang Huichao2, Lingyong Zeng1, Yiyi He1, Xiaopeng Wang1, Wanzhen Su1, Meng Wang2, Dao-Xin Yao2, Zhijun Wang3,4, and Huixia Luo1*
1School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, and Key Lab of Polymer Composite & Functional Materials, Sun Yat-Sen University, Guangzhou 510275, China
2School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
3Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Mebrouka Boubeche, Jia Yu, Li Chushan et al  2021 Chin. Phys. Lett. 38 037401
Download: PDF(3726KB)   PDF(mobile)(3724KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a systematic investigation on the evolution of the structural and physical properties, including the charge density wave (CDW) and superconductivity of the polycrystalline CuIr$_{2}$Te$_{4- x}$I$_{x}$ for $0.0 \le x \le 1.0$. X-ray diffraction results indicate that both of $a$ and $c$ lattice parameters increase linearly when $0.0 \le x \le 1.0$. The resistivity measurements indicate that the CDW is destabilized with slight $x$ but reappears at $x \ge 0.9$ with very high $T_{\rm CDW}$. Meanwhile, the superconducting transition temperature $T_{\rm c}$ enhances as $x$ increases and reaches a maximum value of around 2.95 K for the optimal composition CuIr$_{2}$Te$_{1.9}$I$_{0.1}$ followed by a slight decrease with higher iodine doping content. The specific heat jump ($\Delta C/\gamma T_{\rm c}$) for the optimal composition CuIr$_{2}$Te$_{3.9}$I$_{0.1}$ is approximately 1.46, which is close to the Bardeen–Cooper–Schrieffer value of 1.43, indicating that it is a bulk superconductor. The results of thermodynamic heat capacity measurements under different magnetic fields [$C_{\rm p}(T, H)$], magnetization $M(T, H)$ and magneto-transport $\rho (T, H)$ measurements further suggest that CuIr$_{2}$Te$_{4- x}$I$_{x}$ bulks are type-II superconductors. Finally, an electronic phase diagram for this CuIr$_{2}$Te$_{4- x}$I$_{x}$ system has been constructed. The present study provides a suitable material platform for further investigation of the interplay of the CDW and superconductivity.
Received: 25 November 2020      Published: 02 March 2021
PACS:  74.25.-q (Properties of superconductors)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.25.F- (Transport properties)  
  74.70.Xa (Pnictides and chalcogenides)  
Fund: Supported by the National Natural Science Foundation of China (Grants No. 11922415), the Guangdong Basic and Applied Basic Research Foundation (Grants No. 2019A1515011718), the Fundamental Research Funds for the Central Universities (Grants No. 19lgzd03), the Key R&D Program of Guangdong Province, China (Grants No. 2019B110209003), and the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (Grants No. 20191001). H.C. Wang was supported by the National Natural Science Foundation of China (Grant No. 12004441), the Hundreds of Talents Program of Sun Yat-Sen University and the Fundamental Research Funds for the Central Universities (Grants No. 20lgpy165). D.X. Yao was supported by the National Natural Science Foundation of China (Grant No. 11974432), NKRDPC-2017YFA0206203, and NKRDPC-2018YFA0306001. M. Wang was supported by the National Nature Science Foundation of China (11904414), the Natural Science Foundation of Guangdong (2018A030313055), and National Key Research and Development Program of China (Grants No. 2019YFA0705700).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/3/037401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I3/037401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mebrouka Boubeche
Jia Yu
Li Chushan
Wang Huichao
Lingyong Zeng
Yiyi He
Xiaopeng Wang
Wanzhen Su
Meng Wang
Dao-Xin Yao
Zhijun Wang
and Huixia Luo
[1] Lin Z, Zhao Y, Zhou C, Zhong R, Wang X, Tsang Y H and Chai Y 2016 Sci. Rep. 5 18596
[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[3] Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H and Li L J 2014 Front. Energy Res. 2 27
[4] Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 8 1102
[5] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[6] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[7] Gabovich A M, Voitenko A I and Ausloos M 2002 Phys. Rep. 367 583
[8] Di Salvo F J, Schwall R, Geballe T H, Gamble F R and Osiecki J H 1971 Phys. Rev. Lett. 27 310
[9] Fang L, Wang Y, Zou P Y, Tang L, Xu Z, Chen H, Dong C, Shan L and Wen H H 2005 Phys. Rev. B 72 14534
[10] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J 2008 Phys. Rev. B 78 104520
[11] Luo H X, Klimczuk T, Müchler L, Schoop L, Hirai D, Fuccillo M K, Felser C and Cava R J 2013 Phys. Rev. B 87 214510
[12] Luo H X, Xie W, Tao J, Pletikosic I, Valla T, Sahasrabudhe G S, Osterhoudt G, Sutton E, Burch K S, Seibel E M, Krizan J W, Zhu Y and Cava R J 2016 Chem. Mater. 28 1927
[13] Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Fei Y, Song F, Wan X, Yang Z, Wang B, Wang G and Zhang Y 2015 Nat. Commun. 6 7805
[14] Berthier C, Molinie P and Jerome D 1976 Solid State Commun. 18 1393
[15] Nunezregueiro M, Mignot J M, Jaime M, Castello D and Monceau P 1993 Synth. Met. 56 2653
[16] Xi X B H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801
[17] Fu Y, Liu E, Yuan H, Tang P, Lian B, Xu G, Zeng J, Chen Z, Wang Y, Zhou W, Xu K, Gao A, Pan C, Wang M, Wang B, Zhang S C, Cui Y, Hwang H Y and Miao F 2017 npj Quantum Mater. 2 52
[18] Lu J, Zheliuk O, Chen Q, Leermakers I, Hussey N E, Zeitler U and Ye J 2018 Proc. Natl. Acad. Sci. USA 115 3551
[19] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
[20] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146
[21] Takabayashi Y and Prassides K 2016 Philos. Trans. R. Soc. A 374 20150320
[22] da S N E H, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, Ono S, Gu G, Le T M and Yazdani A 2014 Science 343 393
[23] Talantsev I K, Ohmura T, M, Crump W P, Strickland N M, Wimbush S C and Ikuta H 2019 Sci. Rep. 9 14245
[24] Kamitani M, Bahramy M S, Arita R, Seki S, Arima T, Tokura Y and Ishiwata S 2013 Phys. Rev. B 87 180501(R)
[25] Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402
[26] Jin K and Liu K 2015 Sci. Bull. 60 822
[27] Fujisawa Y, Machida T, Igarashi K, Kaneko A, Mochiku T, Ooi S, Tachiki M, Komori K, Hirata K and Sakata H 2015 J. Phys. Soc. Jpn. 84 043706
[28] Yu R B S, Lei H, Abeykoon M, Petrovic C, Guguchia Z and Bozin E S 2018 Phys. Rev. B 98 134506
[29] Takubo K, Yamamoto K, Hirata Y, Wadati H, Mizokawa T, Sutarto R, He F, Ishii K, Yamasaki Y, Nakao H, Murakami Y, Matsuo G, Ishii H, Kobayashi M, Kudo K and Nohara M 2018 Phys. Rev. B 97 205142
[30] Yan D, Zeng Y J, Wang G H, Liu Y Y, Yin J J, Chang T R, Lin H, Wang M, Ma J, Jia S, Yao D X and Luo H X 2019 arXiv:1908.05438 [cond-mat.supr-con]
[31] Yan D, Zeng L Y, Lin Y S, Yin J J, He Y, Zhang X, Huang M L, Shen B, Wang M, Wang Y H, Yao D X and Luo H X 2019 Phys. Rev. B 100 174504
[32] Yan D, Zeng Y, Zeng L Y, Yin J, He Y, Boubeche M, Wang M, Wang Y, Yao D X and Luo H X 2020 arXiv:2003.11463 [cond-mat.supr-con]
[33] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[34] Lu D H Y M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R and Shen Z X 2008 Nature 455 81
[35] Che L, Le T, Huang Q, Yin L, Chen Y, Yang X, Xu Z A and Lu X 2019 Phys. Rev. B 99 024512
[36] Rusinov I P, Menshchikova T V, Isaeva A, Eremeev S V, Koroteev Y M, Vergniory M G, Echenique P M and Chulkov E V 2016 Sci. Rep. 6 20734
[37] Pisoni A, Gaál R, Zeugner A, Falkowski V, Isaeva A, Huppertz H, Autès G, O, Yazyev V and F 2017 Phys. Rev. B 95 235149
[38]Rodríguez-Carvajal J 2001 Commission on Powder Diffraction (IUCr) Newsletter, 26, 12–19
[39] Vegard L 1921 Z. Phys. 5 17
[40] Scholz G 1997 Solid State Ionics 100 135
[41] Baranov N V, Maksimov V I, Mesot J, Pleschov V G, Podlesnyak A, Pomjakushin V and Selezneva N V 2007 J. Phys.: Condens. Matter 19 016005
[42] Selezneva N V, Sherokalova E M, Pleshchev V G, Kazantsev V A and Baranov N V 2016 J. Phys.: Condens. Matter 28 315401
[43] Liu Y, Ang R, Lu W J, Song W H, Li L J and Sun Y P 2013 Appl. Phys. Lett. 102 192602
[44] Li L, Deng X, Wang Z, Liu Y, Abeykoon M, Dooryhee E, Tomic A, Huang Y, Warren J B, Bozin E S, Billinge S J L, Sun Y, Zhu Y, Kotliar G and Petrovic C 2017 npj Quantum Mater. 2 11
[45] McMillan W L 1968 Phys. Rev. 167 331
[46] Winiarski M J, Wiendlocha B et al 2016 Phys. Chem. Chem. Phys. 18 21737
[47] Yadav C S and Paulose P L 2009 New J. Phys. 11 103046
[48] Wilson J A, Barker A S, Di Salvo Jr F J and Ditzenberger J A 1978 Phys. Rev. B 18 2866
[49] Kohn W 1967 Phys. Rev. Lett. 19 439
[50] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 415
[51]Kresin V Z and Wolf S A 1990 Fundamentals of Superconductivity (New York: Plenum Press) p 150
[52] Clogston A M 1962 Phys. Rev. Lett. 9 266
[53]Ginzburg V L and Landau L D 1950 Zh. Eksp. Teor. Fiz 20 1064
Viewed
Full text


Abstract