Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 035201    DOI: 10.1088/0256-307X/38/3/035201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp
Shizhao Wei1, Yahui Wang1, Peiwan Shi2,3, Wei Chen2, Ningfei Chen1, and Zhiyong Qiu1*
1Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027, China
2Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
3Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Cite this article:   
Shizhao Wei, Yahui Wang, Peiwan Shi et al  2021 Chin. Phys. Lett. 38 035201
Download: PDF(545KB)   PDF(mobile)(533KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two novel nonlinear mode coupling processes for reversed shear Alfvén eigenmode (RSAE) nonlinear saturation are proposed and investigated. In the first process, the RSAE nonlinearly couples to a co-propagating toroidal Alfvén eigenmode (TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode. In the second process, the RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode. The condition for the two processes to occur is favored during current ramp. Both the processes contribute to effectively saturate the Alfvénic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.
Received: 27 November 2020      Published: 02 March 2021
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.30.Gz (Gyrokinetics)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFE0301900), the National Natural Science Foundation of China (Grant No. 11875233), and the China Postdoctoral Science Foundation (Grant No. 2020M670756).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/3/035201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I3/035201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shizhao Wei
Yahui Wang
Peiwan Shi
Wei Chen
Ningfei Chen
and Zhiyong Qiu
[1] Tomabechi K, Gilleland J, Sokolov Y, Toschi R and Team I 1991 Nucl. Fusion 31 1135
[2] Fasoli A, Gormenzano C, Berk H, Breizman B, Briguglio S, Darrow D, Gorelenkov N, Heidbrink W, Jaun A, Konovalov S et al. 2007 Nucl. Fusion 47 S264
[3] Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008
[4] Ding R, Pitts R, Borodin D, Carpentier S, Ding F, Gong X, Guo H, Kirschner A, Kocan M, Li J et al. 2015 Nucl. Fusion 55 023013
[5] Chen L 1994 Phys. Plasmas 1 1519
[6] Cheng C, Chen L and Chance M 1985 Ann. Phys. 161 21
[7]Chen L 1988 Theory of Fusion Plasmas ed Va-Clavik J, Troyon F and Sindoni E (Bologna: Association EU-ROATOM) p 327
[8] Fu G Y and Van Dam J W 1989 Phys. Fluids B 1 1949
[9] Berk H L, Borba D N, Breizman B N, Pinches S D and Sharapov S E 2001 Phys. Rev. Lett. 87 185002
[10] Zonca F, Briguglio S, Chen L, Dettrick S, Fogaccia G, Testa D and Vlad G 2002 Phys. Plasmas 9 4939
[11] Kramer G J, Gorelenkov N N, Nazikian R and Cheng C Z 2004 Plasma Phys. Control. Fusion 46 L23
[12] Heidbrink W, Strait E, Chu M and Turnbull A 1993 Phys. Rev. Lett. 71 855
[13] Buratti P, Smeulders P, Zonca F, Annibaldi S, De Benedetti M, Kroegler H, Regnoli G, Tudisco O et al. 2005 Nucl. Fusion 45 1446
[14] Hahm T S and Chen L 1995 Phys. Rev. Lett. 74 266
[15] Zonca F, Romanelli F, Vlad G and Kar C 1995 Phys. Rev. Lett. 74 698
[16] Todo Y, Berk H and Breizman B 2010 Nucl. Fusion 50 084016
[17] Biancalani A, Chen L, Pegoraro F and Zonca F 2010 Phys. Rev. Lett. 105 095002
[18] Chen L and Zonca F 2012 Phys. Rev. Lett. 109 145002
[19] Zhang H and Lin Z 2013 Plasma Sci. Technol. 15 969
[20]Biancalani A, Bottino A, Siena A D, Gorler T, Novikau I, Gurcan O, Morel P, Jenko F, Lanti E, Ohana N et al. 2018 27th IAEA Fusion Energy Conference (Ahmedabad, India, 22–27 October 2018) TH/P2
[21] Gong X, Garofalo A, Huang J, Qian J, Holcomb C, Ekedah A, Maingi R, Li E, Zeng L, Zhang B et al. 2019 Nucl. Fusion 59 086030
[22] Huang J, Garofalo A, Qian J, Gong X, Ding S, Varela J, Chen J, Guo W, Li K, Wu M et al. 2020 Nucl. Fusion 60 126007
[23] Wang T, Qiu Z, Zonca F, Briguglio S, Fogaccia G, Vlad G and Wang X 2018 Phys. Plasmas 25 062509
[24] Ren Z, Chen Y, Fu G and Wang Z 2020 Nucl. Fusion 60 016009
[25] Shi H, Zhang W L, Dong C et al. 2020 Chin. Phys. Lett. 37 085201
[26] Wan B N and the EASteam T 2020 Chin. Phys. Lett. 37 045202
[27] Van Zeeland M A, Austin M E, Gorelenkov N N, Heidbrink W W, Kramer G J, Makowski M A, McKee G R, Nazikian R, Ruskov E and Turnbull A D 2007 Phys. Plasmas 14 056102
[28] Wang T, Qiu Z, Zonca F, Briguglio S and Vlad G 2020 Nucl. Fusion 60 126032
[29]Shi P 2019 private communication
[30] Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
[31] Zonca F and Chen L 2008 Europhys. Lett. 83 35001
[32] Fisch N J and Rax J M 1992 Phys. Rev. Lett. 69 612
[33] Hahm T S 2015 Plasma Sci. Technol. 17 534
[34] Qiu Z, Chen L, Zonca F and Chen W 2018 Phys. Rev. Lett. 120 135001
[35] Connor J, Hastie R and Taylor J 1978 Phys. Rev. Lett. 40 396
[36] Qiu Z, Chen L and Zonca F 2016 Nucl. Fusion 56 106013
[37] Qiu Z, Chen L and Zonca F 2017 Nucl. Fusion 57 056017
[38] Chen L and Zonca F 2013 Phys. Plasmas 20 055402
[39] Frieman E A and Chen L 1982 Phys. Fluids 25 502
[40] Qiu Z, Chen L and Zonca F 2009 Plasma Phys. Control. Fusion 51 012001
[41] Zonca F and Chen L 1996 Phys. Plasmas 3 323
[42] Qiu Z, Chen L and Zonca F 2019 Nucl. Fusion 59 066024
Viewed
Full text


Abstract