Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 034201    DOI: 10.1088/0256-307X/38/3/034201
Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling
Yan-Ning Liu1,2, Xiao-Long Weng1,2, Peng Zhang3*, Wen-Xin Li1,2, Yu Gong3, Li Zhang1,2, Tian-Cheng Han1,2, Pei-Heng Zhou1,2, and Long-Jiang Deng1,2*
1National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 611731, China
2Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
3Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
Cite this article:   
Yan-Ning Liu, Xiao-Long Weng, Peng Zhang et al  2021 Chin. Phys. Lett. 38 034201
Download: PDF(1643KB)   PDF(mobile)(1631KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Infrared metamaterial absorber (MMA) based on metal-insulator-metal (MIM) configuration with flexible design, perfect and selective absorption, has attracted much attention recently for passive radiative cooling applications. To cool objects passively, broadband infrared absorption (i.e. 8–14 µm) is desirable to emit thermal energy through atmosphere window. We present a novel MMA composed of multilayer MIM resonators periodically arranged on a PbTe/MgF$_{2}$ bilayer substrate. Verified by the rigorous coupled-wave analysis method, the proposed MMA shows a relative bandwidth of about 45% (from 8.3 to 13.1 µm with the absorption intensity over 0.8). The broadband absorption performs stably over a wide incident angle range (below 50$^{\circ}$) and predicts 12 K cooling below ambient temperature at nighttime. Compared with the previous passive radiative coolers, our design gets rid of the continuous metal substrate and provides an almost ideal transparency window (close to 100%) for millimeter waves over 1 mm. The structure is expected to have potential applications in thermal control of integrated devices, where millimeter wave signal compatibility is also required.
Received: 07 October 2020      Published: 02 March 2021
PACS:  03.50.De (Classical electromagnetism, Maxwell equations)  
  42.70.Km (Infrared transmitting materials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  44.40.+a (Thermal radiation)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 52022018 and 52021001), and the Program for Changjiang Scholars and Innovative Research Team in University.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yan-Ning Liu
Xiao-Long Weng
Peng Zhang
Wen-Xin Li
Yu Gong
Li Zhang
Tian-Cheng Han
Pei-Heng Zhou
and Long-Jiang Deng
[1] Zhao B, Hu M, Ao X, Chen N and Pei G 2019 Appl. Energy 236 489
[2] Li W and Fan S 2018 Opt. Express 26 15995
[3] Zeyghami M, Goswami D Y and Stefanakos E 2018 Sol. Energy Mater. Sol. Cells 178 115
[4] Hossain M M and Gu M 2016 Adv. Sci. 3 1500360
[5] Zhao D, Aili A, Zhai Y, Xu S, Tan G, Yin X and Yang R 2019 Appl. Phys. Rev. 6 021306
[6] Fan S and Raman A 2018 Natl. Sci. Rev. 5 132
[7] Song J, Seo J, Han J, Lee J and Lee B J 2020 Appl. Phys. Lett. 117 094101
[8] Catrysse P B, Song A Y and Fan S 2016 ACS Photon. 3 2420
[9] Wu W, Lin S, Wei M, Huang J, Xu H, Lu Y and Song W 2020 Sol. Energy Mater. Sol. Cells 210 110512
[10] Wu D, Liu C, Xu Z, Liu Y, Yu Z, Yu L, Chen L, Li R, Ma R and Ye H 2018 Mater. & Des. 139 104
[11] Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R and Yin X 2017 Science 355 1062
[12] Huang Z and Ruan X 2017 Int. J. Heat Mass Transfer 104 890
[13] Gamage S, Kang E S H, Akerlind C, Sardar S, Edberg J, Kariis H, Ederth T, Berggren M and Jonsson M P 2020 J. Mater. Chem. C 8 11687
[14] Yu W, Lu Y, Chen X, Xu H, Shoo J, Chen X, Sun Y, Hao J and Dai N 2019 Adv. Opt. Mater. 7 1900841
[15] Liu X, Chang Q, Yan M, Wang X, Zhang H, Zhou H and Fan T 2020 Phys. Chem. Chem. Phys. 22 13965
[16] Li Y, Li L, Wang F, Ge H, Xie R and An B 2020 Opt. Mater. Express 10 682
[17] Liu D, Xu Y and Xuan Y 2020 Appl. Opt. 59 6861
[18] Shrestha S, Wang Y, Overvig A C, Lu M, Stein A, Dal N L and Yu N 2018 ACS Photon. 5 3526
[19] Zou C, Ren G, Hossain M M, Nirantar S, Withayachumnankul W, Ahmed T, Bhaskaran M, Sriram S, Gu M and Fumeaux C 2017 Adv. Opt. Mater. 5 1700460
[20] Alaee R, Albooyeh M and Rockstuhl C 2017 J. Phys. D 50 503002
[21] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[22] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O and Wang Z 2019 Adv. Opt. Mater. 7 1800995
[23] Watts C M, Liu X and Padilla W J 2012 Adv. Mater. 24 OP98
[24] Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S and Zhou L 2015 Phys. Rev. Lett. 115 235503
[25] Kim T, Bae J Y, Lee N and Cho H H 2019 Adv. Funct. Mater. 29 1807319
[26] Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M and Kildishev A V 2014 Adv. Mater. 26 7959
[27] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[28] Ustun K and Turhan-Sayan G 2016 J. Appl. Phys. 120 203101
[29] Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S and Fang N X 2012 Nano Lett. 12 1443
[30] Contractor R, D'Aguanno G and Menyuk C 2018 Opt. Express 26 24031
[31] Bossard J A, Lin L, Yun S, Liu L, Werner D H and Mayer T S 2014 ACS Nano 8 1517
[32] Zhang H, Zhang H, Yang J and Liu J 2019 Opt. Express 27 5346
[33] Feng Q, Pu M B, Hu C G and Luo X G 2012 Opt. Lett. 37 2133
[34] Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z and Ran L 2013 Phys. Rev. Lett. 111 187402
[35] Hossain M M, Jia B and Gu M 2015 Adv. Opt. Mater. 3 1047
[36] Ordal M A, Bell R J, Alexander R W, J, Long L L and Querry M R 1985 Appl. Opt. 24 4493
[37] Zhou J, Economon E N, Koschny T and Soukoulis C M 2006 Opt. Lett. 31 3620
[38] Li Y, Zhang P, Liu Y, Jiang R, Gong Y, Deng L and Zhou P 2020 Opt. Commun. 472 126015
[39] Zhang N, Zhou P, Cheng D, Weng X, Xie J and Deng L 2013 Opt. Lett. 38 1125
[40]ITransmission Spectra R , Gemini Observatory (accessed: August 2020)
[41] Peng L, Liu D and Cheng H 2019 Sol. Energy Mater. Sol. Cells 193 7
[42] Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[43] Hsu P C, Liu C, Song A Y, Zhang Z, Peng Y, Xie J, Liu K, Wu C L, Catrysse P B, Cai L, Zhai S, Majumdar A, Fan S and Cui Y 2017 Sci. Adv. 3 e1700895
[44] Chen Z, Zhu L, Raman A and Fan S 2016 Nat. Commun. 7 13729
[45] Lochbaum A, Dorodnyy A, Koch U, Koepfli S M, Volk S, Fedoryshyn Y, Wood V and Leuthold J 2020 Nano Lett. 20 4169
[46] Wei Q, Huang L, Zentgraf T and Wang Y 2020 Nanophotonics 9 987
Related articles from Frontiers Journals
[1] Yan Cen, Chuanshan Tian. Surface Tension and Electrostriction in a Suspended Bridge of Dielectric Liquid[J]. Chin. Phys. Lett., 2018, 35(10): 034201
[2] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 034201
[3] ZHANG Mei, LI Liang-Sheng ZHENG Ning, SHI Qing-Fan . The Fano-Like Resonance in Self-Assembled Trimer Clusters[J]. Chin. Phys. Lett., 2013, 30(7): 034201
[4] LIU Lin-Xia, SHAO Cheng-Gang. Re-estimatation of the Upper Limit on the Photon Mass with the Solar Wind Method[J]. Chin. Phys. Lett., 2012, 29(11): 034201
[5] YAO Bin, ZHENG Qin-Hong, **, PENG Jin-Hui, ZHONG Ru-Neng, XIANG Tai, XU Wan-Song . Partially Loaded Cavity Analysis by Using the 2-D FDTD Method[J]. Chin. Phys. Lett., 2011, 28(11): 034201
[6] ZHANG Zhan-Long, DENG Jun, XIAO Dong-Ping, HE Wei, TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation[J]. Chin. Phys. Lett., 2010, 27(3): 034201
[7] WANG Zhi-Yong, XIONG Cai-Dong, Keller Ole. The First-Quantized Theory of Photons[J]. Chin. Phys. Lett., 2007, 24(2): 034201
[8] ZHANG Yan, SHI Jun-Jie. Enlargement of Photonic Band Gaps and Physical Picture of Photonic Band Structures[J]. Chin. Phys. Lett., 2006, 23(3): 034201
[9] SHA Wei, HUANG Zhi-Xiang, WU Xian-Liang, CHEN Ming-Sheng. Total Field and Scattered Field Technique for Fourth-Order Symplectic Finite Difference Time Domain Method[J]. Chin. Phys. Lett., 2006, 23(1): 034201
[10] JI Xian-Ming, XIA Yong, YIN Jian-Ping. Generation of One-Dimensional Array of Focused Hollow-Beam Pipes and Its Surface Microscopic Waveguide for Cold Atoms or Molecules[J]. Chin. Phys. Lett., 2004, 21(7): 034201
[11] NI Yun, LIU Nan-Chun, YIN Jian-Ping,. Atomic Funnel Composed of an HE11-Mode Output Hollow Beam[J]. Chin. Phys. Lett., 2003, 20(7): 034201
[12] LI Kang, CHEN Wen-Jun, NAÓ, N Carlos M.. Classical Electromagnetic Field Theory in the Presence of Magnetic Sources[J]. Chin. Phys. Lett., 2003, 20(3): 034201
Full text