Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 034101    DOI: 10.1088/0256-307X/38/3/034101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effective Interaction Force between an Electric Charge and a Magnetic Dipole and Locality (or Nonlocality) in Quantum Effects of the Aharonov–Bohm Type
Gianfranco Spavieri1*, George T. Gillies2, Miguel Rodriguez3, and Maribel Perez4
1Centro de Fı́sica Fundamental, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
2Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
3Departamento de Física, Facultad de Ciencia y Tecnología, Universidad de Carabobo, Naguanagua 2001, Venezuela
4Carrera de Ingeniería Ambiental, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 100150, Ecuador
Cite this article:   
Gianfranco Spavieri, George T. Gillies, Miguel Rodriguez et al  2021 Chin. Phys. Lett. 38 034101
Download: PDF(443KB)   PDF(mobile)(428KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Classical electrodynamics foresees that the effective interaction force between a moving charge and a magnetic dipole is modified by the time-varying total momentum of the interaction fields. We derive the equations of motion of the particles from the total stress-energy tensor, assuming the validity of Maxwell's equations and the total momentum conservation law. Applications to the effects of Aharonov–Bohm type show that the observed phase shift may be due to the relative lag between interfering particles caused by the effective local force.
Received: 04 December 2020      Published: 02 March 2021
PACS:  03.30.+p (Special relativity)  
  12.20.Ds (Specific calculations)  
  03.65.Bz  
  39.20.+q  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/3/034101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I3/034101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gianfranco Spavieri
George T. Gillies
Miguel Rodriguez
and Maribel Perez
[1] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[2] Aharonov Y and Casher A 1984 Phys. Rev. Lett. 53 319
[3] Spavieri G 1999 Phys. Rev. Lett. 82 3932
[4] Spavieri G 1998 Phys. Rev. Lett. 81 1533
[5] Spavieri G 1999 Phys. Rev. A 59 3194
[6] Aharonov Y, Pearle P and Vaidman L 1988 Phys. Rev. A 37 4052
[7] Vaidman L 2012 Phys. Rev. A 86 040101
[8] Kang K 2015 Phys. Rev. A 91 052116
[9] Becker M and Batelaan H 2016 Europhys. Lett. 115 10011
[10] Boyer T H 1973 Phys. Rev. D 8 1667
[11] Boyer T H 1973 Phys. Rev. D 8 1679
[12] Boyer T H 2000 Found. Phys. 30 893
[13] Boyer T H 2015 Phys. Rev. E 91 013201
[14] Boyer T H 1987 Phys. Rev. A 36 5083
[15] Coleman S and Van Vleck J H 1968 Phys. Rev. 171 1370
[16] Peshkin M and Lipkin H J 1995 Phys. Rev. Lett. 74 2847
[17] Spavieri G and Cavalleri G 1992 Europhys. Lett. 18 301
[18] Griffiths R B 2020 Phys. Rev. A 101 022117
[19] Chambers R G 1960 Phys. Rev. Lett. 5 3
[20] Tonomura A, Osakabe N, Matsuda T, Kawasaki T, Endo J, Yano S and Yamada H 1986 Phys. Rev. Lett. 56 792
[21] Cimmino A, Opat G I, Klein A G, Kaiser H, Werner S A, Arif M and Clothier R 1989 Phys. Rev. Lett. 63 380
[22] Sangster K, Hinds E A, Barnett S M and Riis E 1993 Phys. Rev. Lett. 71 3641
[23] Sangster K, Hinds E A, Barnett S M, Riis E and Sinclair A G 1995 Phys. Rev. A 51 1776
[24] Casella R C 1990 Phys. Rev. Lett. 65 2217
[25] Shockley W and James R P 1967 Phys. Rev. Lett. 18 876
[26] Spavieri G 1994 Nuovo Cimento B 109 45
[27] Spavieri G 2006 Eur. Phys. J. D 37 327
[28] Spavieri G and Mansuripur M 2015 Phys. Scr. 90 085501
[29] Spavieri G 2016 Eur. Phys. J. D 70 263
[30]Spavieri G and Gillies G 2003 Nuovo Cimento B 118 205
[31] Spavieri G, Erazo J, Sanchez A, Aguirre F, Gillies G and Rodriguez M 2008 Front. Phys. Chin. 3 239
[32] Zhu X and Henneberger W 1990 J. Phys. A 23 3983
[33]Jackson J D 1975 Classical Electrodynamics 2nd edn (New York: John Wiley & Sons) sections 5 and 6
Viewed
Full text


Abstract