Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 030501    DOI: 10.1088/0256-307X/38/3/030501
Advection and Thermal Diode
Ying Li1,2,3* and Jiaxin Li4
1Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou 310027, China
3International Joint Innovation Center, Zhejiang University, Haining 314400, China
4School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article:   
Ying Li and Jiaxin Li 2021 Chin. Phys. Lett. 38 030501
Download: PDF(1229KB)   PDF(mobile)(1228KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We prove that under the condition of closed boundary to mass flux, pure advection is not a valid mechanism to make a practical thermal diode. Among the various designs of thermal diodes, many of them involve circulating fluid flow, such as in thermosyphons. However, those designs often employ natural convection, which is basically a nonlinear process. It thus remains unclear how the pure advection of temperature field induced by a decoupled velocity field influences the symmetry of heat transfer. Here we study three typical models with pure advection: one with open boundary, one with closed boundary at unsteady state, and one with closed boundary at steady state. It is shown that only the last model is practical, while it cannot become a thermal diode. Finally, a general proof is given for our claim by analyzing the diffusive reciprocity.
Received: 28 November 2020      Published: 02 March 2021
PACS:  05.70.-a (Thermodynamics)  
  44.10.+i (Heat conduction)  
  47.55.pb (Thermal convection)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Ying Li and Jiaxin Li
[1] Potton R J 2004 Rep. Prog. Phys. 67 717
[2] Ding Y, Peng Y, Zhu Y, Fan X, Yang J, Liang B, Zhu X, Wan X and Cheng J 2019 Phys. Rev. Lett. 122 014302
[3] Nassar H, Yousefzadeh B, Fleury R, Ruzzene M, Alù A, Daraio C, Norris A N, Huang G and Haberman M R 2020 Nat. Rev. Mater. 5 667
[4] Li Y, Li J, Qi M H, Qiu C W and Chen H S 2021 Phys. Rev. B 103 014307
[5] Silveirinha M G 2019 Opt. Express 27 14328
[6] Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K and Deck-Léger Z L 2018 Phys. Rev. Appl. 10 047001
[7] Onsager L 1931 Phys. Rev. 37 405
[8] Casimir H B G 1945 Rev. Mod. Phys. 17 343
[9] Floess D, Chin J Y, Kawatani A, Dregely D, Habermeier H U, Weiss T and Giessen H 2015 Light: Sci. & Appl. 4 e284
[10] Zhu L and Fan S 2014 Phys. Rev. B 90 220301
[11] Zhao B, Shi Y, Wang J, Zhao Z, Zhao N and Fan S 2019 Opt. Lett. 44 4203
[12] Hu H, Liu L, Hu X, Liu D and Gao D 2019 Photon. Res. 7 642
[13] Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H and Qiu C W 2020 arXiv:2008.07964 []
[14] Yang S, Wang J, Dai G, Yang F and Huang J 2020 Phys. Rep. (in press)
[15] Wehmeyer G, Yabuki T, Monachon C, Wu J and Dames C 2017 Appl. Phys. Rev. 4 041304
[16] Jones G F 1986 J. Sol. Energy Eng. 108 163
[17] Chen K 1988 J. Sol. Energy Eng. 110 299
[18]Bejan A 2013 Convection Heat Transfer (New York: John Wiley & Sons)
[19] Xu L and Huang J 2020 Chin. Phys. Lett. 37 080502
[20] Qing X, Jinxin Z, Jixiong H, Xiangfan X, Tsuneyoshi N, Yuanyuan W, Jun L, Jun Z and Baowen L 2020 Chin. Phys. Lett. 37 104401
[21] Kobayashi W, Teraoka Y and Terasaki I 2009 Appl. Phys. Lett. 95 171905
[22] Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503
[23] Li Y, Shen X, Huang J and Ni Y 2016 Phys. Lett. A 380 1641
[24] Dai G and Huang J 2020 Int. J. Heat Mass Transfer 147 118917
[25] Yang F B, Xu L J and Huang J P 2019 ES Energy & Environ. 6 45
[26] Shen X, Li Y, Jiang C and Huang J 2016 Phys. Rev. Lett. 117 055501
[27] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[28] Huang S Y, Zhang J W, Wang M, Lan W, Hu R and Luo X B 2019 ES Energy & Environ. 6 51
[29] Li Y, Zhu K J, Peng Y G, Li W, Yang T, Xu H X, Chen H, Zhu X F, Fan S and Qiu C W 2019 Nat. Mater. 18 48
[30] Xu G, Dong K, Li Y, Li H, Liu K, Li L, Wu J and Qiu C W 2020 Nat. Commun. 11 6028
[31] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Alù A, Fan S and Qiu C W 2019 Science 364 170
[32] Cao P C, Li Y, Peng Y G and Qiu C W and Zhu X F 2020 ES Energy & Environ. 7 48
[33] Li J, Li Y, Cao P C, Yang T, Zhu X F, Wang W and Qiu C W 2020 Adv. Mater. 32 2003823
[34] Li J, Li Y, Wang W, Li L and Qiu C W 2020 Opt. Express 28 25894
Related articles from Frontiers Journals
[1] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 030501
[2] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 030501
[3] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 030501
[4] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 030501
[5] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 030501
[6] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 030501
[7] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 030501
[8] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 030501
[9] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 030501
[10] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 030501
[11] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 030501
[12] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 030501
[13] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 030501
[14] LIU Hui, HOU De-Fu, LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2007, 24(5): 030501
[15] CHEN Jiang-Xing, JIAO Zheng-Kuan. Mode-Locking Behaviour in Driven Colloids with Random Pinning[J]. Chin. Phys. Lett., 2007, 24(4): 030501
Full text