Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 118701    DOI: 10.1088/0256-307X/38/11/118701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Acceleration of DNA Replication of Klenow Fragment by Small Resisting Force
Yu-Ru Liu1, Peng-Ye Wang1,2,3, Wei Li1,3*, and Ping Xie1*
1Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Yu-Ru Liu, Peng-Ye Wang, Wei Li et al  2021 Chin. Phys. Lett. 38 118701
Download: PDF(870KB)   PDF(mobile)(966KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract DNA polymerases are an essential class of enzymes or molecular motors that catalyze processive DNA syntheses during DNA replications. A critical issue for DNA polymerases is their molecular mechanism of processive DNA replication. We have proposed a model for chemomechanical coupling of DNA polymerases before, based on which the predicted results have been provided about the dependence of DNA replication velocity upon the external force on Klenow fragment of DNA polymerase I. Here, we performed single molecule measurements of the replication velocity of Klenow fragment under the external force by using magnetic tweezers. The single molecule data verified quantitatively the previous theoretical predictions, which is critical to the chemomechanical coupling mechanism of DNA polymerases. A prominent characteristic for the Klenow fragment is that the replication velocity is independent of the assisting force whereas the velocity increases largely with the increase of the resisting force, attains the maximum velocity at about 3.8 pN and then decreases with the further increase of the resisting force.
Received: 23 August 2021      Editors' Suggestion Published: 13 October 2021
PACS:  numbers.87.15.rp  
  87.80.Nj (Single-molecule techniques)  
  87.15.kj (Protein-polynucleotide interactions)  
  87.16.Nn (Motor proteins (myosin, kinesin dynein))  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11674381, 21991133, 11774407, 11874415, 11874414, and 31770812), the Key Research Program on Frontier Science (Grant No. QYZDB-SSWSLH045), the National Key Research and Development Program of China (Grant No. 2016YFA0301500), the CAS Strategic Priority Research Program (Grant No. XDB37010100), and the National Laboratory of Biomacromolecules (Grant No. 2020kf02).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/11/118701       OR      http://cpl.iphy.ac.cn/Y2021/V38/I11/118701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Ru Liu
Peng-Ye Wang
Wei Li
and Ping Xie
[1] Klenow H and Henningsen I 1970 Proc. Natl. Acad. Sci. USA 65 168
[2] Bebenek K, Joyce C M, Fitzgerald M P, and Kunkel T A 1990 J. Biol. Chem. 265 13878
[3] Patel P H, Suzuki M, Adman E, Shinkai A, and Loeb L A 2001 J. Mol. Biol. 308 823
[4] Ollis D L, Brick P, Hamlin R, Xuong N G, and Steitz T A 1985 Nature 313 762
[5] Korolev S, Nayal M, Barnes W M, Di Cera E, and Waksman G 1995 Proc. Natl. Acad. Sci. USA 92 9264
[6] Kim Y, Eom S H, Wang J, Lee D S, Suh S W, and Steitz T A 1995 Nature 376 612
[7] Eom S H, Wang J, and Steitz T A 1996 Nature 382 278
[8] Kiefer J R, Mao C, Hansen C J, Basehore S L, Hogrefe H H, Braman J C, and Beese L S 1997 Structure 5 95
[9] Doublie S and Ellenberger T 1998 Curr. Opin. Struct. Biol. 8 704
[10] Doublie S, Tabor S, Long A M, Richardson C C, and Ellenberger T 1998 Nature 391 251
[11] Li Y, Korolev S, and Waksman G 1998 EMBO J. 17 7514
[12] Doublie S, Sawaya M R, and Ellenberger T 1999 Structure 7 R31
[13] Huang H, Chopra R, Verdine G L, and Harrison S C 1998 Science 282 1669
[14] Joyce C M, Potapova O, DeLucia A M, Huang X, Basu V P, and Grindley N D F 2008 Biochemistry 47 6103
[15] Dahlberg M E and Benkovic S J 1991 Biochemistry 30 4835
[16] Christian T D, Romano L J, and Rueda D 2009 Proc. Natl. Acad. Sci. USA 106 21109
[17] Schwartz J J and Quake S R 2009 Proc. Natl. Acad. Sci. USA 106 20294
[18] Maier B, Bensimon D, and Croquette V 2000 Proc. Natl. Acad. Sci. USA 97 12002
[19] Wuite G J L, Smith S B, Young M, Keller D, and Bustamante C 2000 Nature 404 103
[20] Goel A, Frank-Kamenetskii M D, Ellenberger T, and Herschbach D 2001 Proc. Natl. Acad. Sci. USA 98 8485
[21] Goel A, Astumian R D, and Herschbach D 2003 Proc. Natl. Acad. Sci. USA 100 9699
[22] Andricioaei I, Goel A, Herschbach D, and Karplus M 2004 Biophys. J. 87 1478
[23] Venkatramani R and Radhakrishnan R 2008 Phys. Rev. Lett. 100 088102
[24] Xie P 2013 J. Mol. Model. 19 1379
[25] Xie P 2007 Arch. Biochem. Biophys. 457 73
[26] Xie P 2011 J. Theor. Biol. 277 111
[27] Xie P 2012 J. Mol. Model. 18 1951
[28] Turner R M, Grindley N D F, and Joyce C M 2003 Biochemistry 42 2373
[29] Datta K, Wowor A J, Richard A J, and LiCata V J 2006 Biophys. J. 90 1739
[30] Thomen P, Lopez P J, and Heslot F 2005 Phys. Rev. Lett. 94 128102
[31] Mohapatra S, Lin C T, Feng X A, Basu A, and Ha T 2020 Chem. Rev. 120 36
Viewed
Full text


Abstract