Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 117101    DOI: 10.1088/0256-307X/38/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Determination of the Range of Magnetic Interactions from the Relations between Magnon Eigenvalues at High-Symmetry $k$ Points
Di Wang1,2, Jihai Yu1,2, Feng Tang1,2, Yuan Li3,4, and Xiangang Wan1,2*
1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
3International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
4Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Cite this article:   
Di Wang, Jihai Yu, Feng Tang et al  2021 Chin. Phys. Lett. 38 117101
Download: PDF(599KB)   PDF(mobile)(1493KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetic exchange interactions (MEIs) define networks of coupled magnetic moments and lead to a surprisingly rich variety of their magnetic properties. Typically MEIs can be estimated by fitting experimental results. Unfortunately, how many MEIs need to be included in the fitting process for a material is unclear a priori, which limits the results obtained by these conventional methods. Based on linear spin-wave theory but without performing matrix diagonalization, we show that for a general quadratic spin Hamiltonian, there is a simple relation between the Fourier transform of MEIs and the sum of square of magnon energies (SSME). We further show that according to the real-space distance range within which MEIs are considered relevant, one can obtain the corresponding relationships between SSME in momentum space. By directly utilizing these characteristics and the experimental magnon energies at only a few high-symmetry $k$ points in the Brillouin zone, one can obtain strong constraints about the range of exchange path beyond which MEIs can be safely neglected. Our methodology is also generally applicable for other Hamiltonian with quadratic Fermi or Boson operators.
Received: 22 September 2021      Editors' Suggestion Published: 28 October 2021
PACS:  71.70.Gm (Exchange interactions)  
  Exchange  
  interactions  
  75.30.Ds (Spin waves)  
  Spin  
  waves  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11834006, 12004170, and 12104215), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200326), and the Excellent Programme in Nanjing University. Xiangang Wan also acknowledges the support from the Tencent Foundation through the XPLORER PRIZE.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/11/117101       OR      http://cpl.iphy.ac.cn/Y2021/V38/I11/117101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Di Wang
Jihai Yu
Feng Tang
Yuan Li
and Xiangang Wan
[1]Stöhr J and Siegmann H 2006 Magnetism from Fundamentals to Nanoscale Dynamics (Berlin: Springer)
[2]Buschow K H J, Boer F R et al. 2003 Physics of Magnetism and Magnetic Materials (Berlin: Springer)
[3]White R M 2007 Quantum Theory of Magnetism: Magnetic Properties of Materials (Berlin: Springer-Verlag)
[4]Lichtenstein A I, Anisimov V I, and Katsnelson M I 2003 Electronic Structure and Magnetism of Correlated Systems: Beyond LDA (Berlin: Springer)
[5]Prabhakar A and Stancil D D 2009 Spin Waves: Theory and Applications (Berlin: Springer) vol 5
[6] Krawczyk M and Grundler D 2014 J. Phys.: Condens. Matter 26 123202
[7] Kosevich A M, Ivanov B, and Kovalev A 1990 Phys. Rep. 194 117
[8] Fogedby H C 1980 J. Phys. A 13 1467
[9] Giamarchi T, Rüegg C, and Tchernyshyov O 2008 Nat. Phys. 4 198
[10] Nikuni T, Oshikawa M, Oosawa A, and Tanaka H 2000 Phys. Rev. Lett. 84 5868
[11] Demokritov S, Demidov V, Dzyapko O, Melkov G, Serga A, Hillebrands B, and Slavin A 2006 Nature 443 430
[12] Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, and Tokura Y 2010 Science 329 297
[13] Chisnell R, Helton J S, Freedman D E, Singh D, Bewley R, Nocera D G, and Lee Y S 2015 Phys. Rev. Lett. 115 147201
[14] Kondo H, Akagi Y, and Katsura H 2019 Phys. Rev. B 99 041110
[15] Mook A, Henk J, and Mertig I 2014 Phys. Rev. B 90 024412
[16] Zhang L, Ren J, Wang J S, and Li B 2013 Phys. Rev. B 87 144101
[17] Fransson J, Black-Schaffer A M, and Balatsky A V 2016 Phys. Rev. B 94 075401
[18] Owerre S A 2017 J. Phys. Commun. 1 025007
[19] Okuma N 2017 Phys. Rev. Lett. 119 107205
[20] Yao W, Li C, Wang L, Xue S, Dan Y, Iida K, Kamazawa K, Li K, Fang C, and Li Y 2018 Nat. Phys. 14 1011
[21] Bao S, Wang J, Wang W, Cai Z, Li S, Ma Z, Wang D, Ran K, Dong Z Y, Abernathy D L, Yu S L, Wan X, Li J X, and Wen J 2018 Nat. Commun. 9 2591
[22] Li F Y, Li Y D, Kim Y B, Balents L, Yu Y, and Chen G 2016 Nat. Commun. 7 12691
[23] Mook A, Henk J, and Mertig I 2016 Phys. Rev. Lett. 117 157204
[24] Su Y, Wang X S, and Wang X R 2017 Phys. Rev. B 95 224403
[25] Serga A, Chumak A, and Hillebrands B 2010 J. Phys. D 43 264002
[26] Kruglyak V, Demokritov S, and Grundler D 2010 J. Phys. D 43 264001
[27] Chumak A, Vasyuchka V, Serga A, and Hillebrands B 2015 Nat. Phys. 11 453
[28] Nikitov S A, Kalyabin D V, Lisenkov I V, Slavin A, Barabanenkov Y N, Osokin S A, Sadovnikov A V, Beginin E N, Morozova M A, Filimonov Y A et al. 2015 Phys.-Usp. 58 1002
[29] Lenk B, Ulrichs H, Garbs F, and Münzenberg M 2011 Phys. Rep. 507 107
[30] Xiang H, Lee C, Koo H J, Gong X, and Whangbo M H 2013 Dalton Trans. 42 823
[31] Liechtenstein A I, Katsnelson M I, Antropov V P, and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
[32] Bruno P 2003 Phys. Rev. Lett. 90 087205
[33] Wan X, Yin Q, and Savrasov S Y 2006 Phys. Rev. Lett. 97 266403
[34] Ebert H, Koedderitzsch D, and Minar J 2011 Rep. Prog. Phys. 74 096501
[35] Secchi A, Lichtenstein A I, and Katsnelson M I 2015 Ann. Phys. 360 61
[36] Rosengaard N M and Johansson B 1997 Phys. Rev. B 55 14975
[37] Halilov S, Eschrig H, Perlov A, and Oppeneer P 1998 Phys. Rev. B 58 293
[38] Paddison J A M 2020 Phys. Rev. Lett. 125 247202
[39] Anisimov V, Aryasetiawan F, and Lichtenstein A 1997 J. Phys.: Condens. Matter 9 767
[40] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[41] Hohenberg P C and Brinkman W F 1974 Phys. Rev. B 10 128
[42] Kitaev A 2006 Ann. Phys. 321 2
[43] Gardner J S, Gingras M J, and Greedan J E 2010 Rev. Mod. Phys. 82 53
[44] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[45] Moriya T 1960 Phys. Rev. 120 91
[46] Kotliar G and Sompolinsky H 1984 Phys. Rev. Lett. 53 1751
[47] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[48] Winter S M, Tsirlin A A, Daghofer M, van den Brink J, Singh Y, Gegenwart P, and Valentı́ R 2017 J. Phys.: Condens. Matter 29 493002
[49] Santini P, Carretta S, Amoretti G, Caciuffo R, Magnani N, and Lander G H 2009 Rev. Mod. Phys. 81 807
[50] Kugel K and Khomskii D 1982 Sov. Phys. Usp. 25 231
Related articles from Frontiers Journals
[1] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 117101
[2] Chunkai Chan, Xiaodong Zhang, Yiou Zhang, Kinfai Tse, Bei Deng, Jingzhao Zhang, Junyi Zhu. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer[J]. Chin. Phys. Lett., 2018, 35(1): 117101
[3] LI Ju-Fen, KUANG Xiao-Yu, ** . Analysis of Ground-State Zero-Field Splitting for Mn2+ in ZnNbOF56(H2O) and CoNbOF56(H2O)[J]. Chin. Phys. Lett., 2011, 28(6): 117101
[4] TIAN Gui-Hua, ZHONG Shu-Quan . A New Model For the Double Well Potential[J]. Chin. Phys. Lett., 2010, 27(10): 117101
[5] JIANG Ran, LI Zi-Feng. Oxygen Recovery in Hf Oxide Films Fabricated by Sputtering[J]. Chin. Phys. Lett., 2009, 26(5): 117101
[6] JIANG Ran, YAO Li-Ting. Interface Evolution of TiN/Poly Si as Gate Material on Si/HfO2 Stack[J]. Chin. Phys. Lett., 2008, 25(6): 117101
[7] LIU Bao-Rong, ZHAO Li-Juan, SUN Jian, YU Hua, SONG Jie, XU Jing-Jun,. Broadband and High Efficient 1530nm Emission from Oxyfluoride Glass Ceramics Codoped with Er 3+ and Yb 3+ Ions[J]. Chin. Phys. Lett., 2007, 24(2): 117101
[8] ZHANG Chang-Wen, ZHANG Zhong, WANG Shao-Qing, LI Hua, DONG Jian-Min, XING Nai-Sheng, GUO Yong-Quan, LI Wei. First-Principles Study of Electronic Structure of the Laves Phase ZrFe2[J]. Chin. Phys. Lett., 2007, 24(2): 117101
[9] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, GUO Yong-Quan, LI Wei. Electronic Structure and Magnetic Properties of SmCo7-xZrx[J]. Chin. Phys. Lett., 2006, 23(6): 117101
[10] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, WANG Yong-Juan, PAN Feng-Chun, GUO Yong-Quan, LI Wei. Exchange Coupling and Stability of SmCo7-xHfx[J]. Chin. Phys. Lett., 2005, 22(11): 117101
[11] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, GUO Yong-Quan, LI Wei. Electronic Structure and Magnetism in Sm(Co,Cu)7[J]. Chin. Phys. Lett., 2005, 22(8): 117101
[12] ZHAO Kun, HUANG Yan-Hong, FENG Jia-Feng, WONG Hong-Kuen. Superconducting Transition Temperature and Metal--Semiconductor Transition Temperature in YBa2Cu4O8/La0.67Ca0.33MnO3/YBa2Cu4O8 Trilayer Films[J]. Chin. Phys. Lett., 2004, 21(12): 117101
Viewed
Full text


Abstract