Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 116801    DOI: 10.1088/0256-307X/38/11/116801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te
Jia-Qi Guan1, Li Wang2, Pengdong Wang2, Wei Ren2, Shuai Lu2, Rong Huang2, Fangsen Li2*, Can-Li Song1,3*, Xu-Cun Ma1,3, and Qi-Kun Xue1,3,4,5
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
2Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
3Frontier Science Center for Quantum Information, Beijing 100084, China
4Beijing Academy of Quantum Information Sciences, Beijing 100193, China
5Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Jia-Qi Guan, Li Wang, Pengdong Wang et al  2021 Chin. Phys. Lett. 38 116801
Download: PDF(867KB)   PDF(mobile)(962KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional honeycomb crystals have inspired intense research interest for their novel properties and great potential in electronics and optoelectronics. Here, through molecular beam epitaxy on SrTiO$_{3}$(001), we report successful epitaxial growth of metal-rich chalcogenide Fe$_{2}$Te, a honeycomb-structured film that has no direct bulk analogue, under Te-limited growth conditions. The structural morphology and electronic properties of Fe$_{2}$Te are explored with scanning tunneling microscopy and angle resolved photoemission spectroscopy, which reveal electronic bands cross the Fermi level and nearly flat bands. Moreover, we find a weak interfacial interaction between Fe$_{2}$Te and the underlying substrates, paving a newly developed alternative avenue for honeycomb-based electronic devices.
Received: 29 August 2021      Editors' Suggestion Published: 27 October 2021
PACS:  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.55.-a (Thin film structure and morphology)  
  74.70.Xa (Pnictides and chalcogenides)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51788104, 11604366, 11774192, and 11634007), and the National Key R&D Program of China (Grant Nos. 2017YFA0304600 and 2018YFA0305603).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/11/116801       OR      http://cpl.iphy.ac.cn/Y2021/V38/I11/116801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia-Qi Guan
Li Wang
Pengdong Wang
Wei Ren
Shuai Lu
Rong Huang
Fangsen Li
Can-Li Song
Xu-Cun Ma
and Qi-Kun Xue
[1] Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Novoselov K S, Geim A K, Morozov S V et al. 2005 Nature 438 197
[4] Liu H, Neal A T, Zhu Z et al. 2014 ACS Nano 8 4033
[5] Vogt P, De Padova P, Quaresima C et al. 2012 Phys. Rev. Lett. 108 155501
[6] Bianco E, Butler S, Jiang S et al. 2013 ACS Nano 7 4414
[7] Zhu F F, Chen W J, Xu Y et al. 2015 Nat. Mater. 14 1020
[8] Deng J L, Xia B Y, Ma X C et al. 2018 Nat. Mater. 17 1081
[9] Li L L, Yu Y J, Ye G J et al. 2014 Nat. Nanotechnol. 9 372
[10] Vishnoi P, Mazumder M, Pati S K et al. 2018 New J. Chem. 42 14091
[11] Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D et al. 2016 Adv. Mater. 28 6332
[12] Reis F, Li G, Dudy L et al. 2017 Science 357 287
[13] Wang Y, Qiu G, Wang R X et al. 2018 Nat. Electron. 1 228
[14] Xu Y, Yan B, Zhang H J et al. 2013 Phys. Rev. Lett. 111 136804
[15] Liao M H, Zang Y Y, Guan Z Y et al. 2018 Nat. Phys. 14 344
[16] Sharma S, Singh N, and Schwingenschlögl U 2018 ACS Appl. Energy Mater. 1 1950
[17] Gao L, Sun J T, Lu J C et al. 2018 Adv. Mater. 30 1707055
[18] Liu B, Liu J, Miao G Y et al. 2019 J. Phys. Chem. Lett. 10 1866
[19] Okamoto H and Tanner L 1990 Bull. Alloy Phase Diagrams 11 371
[20] Ma F J, Ji W, Hu J P et al. 2009 Phys. Rev. Lett. 102 177003
[21] Bao W, Qiu Y, Huang Q et al. 2009 Phys. Rev. Lett. 102 247001
[22] Parker D S 2017 Sci. Rep. 7 1
[23] Tsubokawa I, Chiba S 1959 J. Phys. Soc. Jpn. 14 1120
[24] Harada T 1998 J. Phys. Soc. Jpn. 67 1352
[25] Sui X L, Hu T, Wang J F et al. 2017 Phys. Rev. B 96 041410
[26] Kang L X, Ye C, Zhao X X et al. 2020 Nat. Commun. 11 1
[27] Zhang Z M, Cai M, Li R et al. 2020 Phys. Rev. Mater. 4 125003
[28] Pereira V M, Wu C N, Liu C E et al. 2020 Phys. Rev. Mater. 4 023405
[29] Song C L, Wang Y L, Jiang Y P et al. 2011 Phys. Rev. B 84 020503
[30] Telesca D, Nie Y, Budnick J I et al. 2012 Surf. Sci. 606 1056
[31] Telesca D, Nie Y, Budnick J I et al. 2012 Phys. Rev. B 85 214517
[32] Wu C, Bergman D, Lents B et al. 2007 Phys. Rev. Lett. 99 070401
[33] Su N, Jiang W, Wang Z et al. 2018 Appl. Phys. Lett. 112 033301
[34] Gardenier T S, van den Broeke J J, Moes J R et al. 2020 ACS Nano 14 13638
Related articles from Frontiers Journals
[1] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 116801
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 116801
[3] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 116801
[4] Matthias Batzill. Search for 2D Ferromagnets: Molecular Beam Epitaxy is a Critical Tool[J]. Chin. Phys. Lett., 2020, 37(8): 116801
[5] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 116801
[6] Shan Li, Jun Lu, Lian-Jun Wen, Dong Pan, Hai-Long Wang, Da-Hai Wei, and Jian-Hua Zhao. Unusual Anomalous Hall Effect in a Co$_{2}$MnSi/MnGa/Pt Trilayer[J]. Chin. Phys. Lett., 2020, 37(7): 116801
[7] Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang, Qi Feng, Zihao Wang, Hong-Xing Xu, Ting Wang, Jian-Jun Zhang. A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials[J]. Chin. Phys. Lett., 2020, 37(2): 116801
[8] Zhi-Feng Yu, Jun Lu, Hai-Long Wang, Xu-Peng Zhao, Da-Hai Wei, Jia-Lin Ma, Si-Wei Mao, Jian-Hua Zhao. Tunable Perpendicular Magnetic Anisotropy in Off-Stoichiometric Full-Heusler Alloy Co$_{2}$MnAl[J]. Chin. Phys. Lett., 2019, 36(6): 116801
[9] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 116801
[10] Yi Gu, Hui-Jun Zheng, Xi-Ren Chen, Jia-Ming Li, Tian-Xiao Nie, Xu-Feng Kou. Influence of Surface Structures on Quality of CdTe(100) Thin Films Grown on GaAs(100) Substrates[J]. Chin. Phys. Lett., 2018, 35(8): 116801
[11] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 116801
[12] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 116801
[13] Chong Liu, Haohao Yang, Can-Li Song, Wei Li, Ke He, Xu-Cun Ma, Lili Wang, Qi-Kun Xue. Observation of Tunneling Gap in Epitaxial Ultrathin Films of Pyrite-Type Copper Disulfide[J]. Chin. Phys. Lett., 2018, 35(2): 116801
[14] Kun Zhao, Hai-Cheng Lin, Wan-Tong Huang, Xiao-Peng Hu, Xi Chen, Qi-Kun Xue, Shuai-Hua Ji. Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO$_{3}$(001) Substrates[J]. Chin. Phys. Lett., 2017, 34(8): 116801
[15] Zun-Ren Lv, Hai-Ming Ji, Xiao-Guang Yang, Shuai Luo, Feng Gao, Feng Xu, Tao Yang. Large Signal Modulation Characteristics in the Transition Regime for Two-State Lasing Quantum Dot Lasers[J]. Chin. Phys. Lett., 2016, 33(12): 116801
Viewed
Full text


Abstract