Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 113101    DOI: 10.1088/0256-307X/38/11/113101
ATOMIC AND MOLECULAR PHYSICS |
Effect of Electron Correlation and Breit Interaction on Energies, Oscillator Strengths, and Transition Rates for Low-Lying States of Helium
Qing Liu1, Jiguang Li2, Jianguo Wang2, and Yizhi Qu1*
1School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
2Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Cite this article:   
Qing Liu, Jiguang Li, Jianguo Wang et al  2021 Chin. Phys. Lett. 38 113101
Download: PDF(397KB)   PDF(mobile)(514KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1$s^{2}$, 1$s$2$s$, and 1$s2p$ states of He I, are investigated using the multi-configuration Dirac–Hartree–Fock method. In the subsequent relativistic configuration interaction computations, the Breit interaction and the QED effect are considered as perturbation, separately. Our transition energies, oscillator strengths, and transition rates are in good agreement with the experimental and other theoretical results. As a result, the QED effect is not important for helium atoms, however, the effect of the Breit interaction plays a significant role in the transition energies, the oscillator strengths and transition rates.
Received: 28 July 2021      Published: 13 October 2021
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
  31.30.jc (Relativistic corrections to atomic structure and properties)  
  31.15.A- (Ab initio calculations)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), and the National Natural Science Foundation of China (Grant Nos. 11774344 and 11474033).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/11/113101       OR      http://cpl.iphy.ac.cn/Y2021/V38/I11/113101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing Liu
Jiguang Li
Jianguo Wang
and Yizhi Qu
[1] Träbert E 2014 Phys. Scr. 89 114003
[2] Zhao Y, Deng B, Xiong G, Hu Z M, Wei M X, Zhu T, Shang W L, Li J, Yang G H, Zhang J Y, and Yang J M 2011 Chin. Phys. Lett. 28 065201
[3] Woodworth J R and Moos H W 1975 Phys. Rev. A 12 2455
[4] Johnson W R, Plante D R, and Sapirstein J 1995 Adv. At. Mol. Opt. Phys. 35 255
[5] Baklanov E V and Denisov A 1997 Quantum Electron. 27 465
[6] Lach G and Pachucki K 2001 Phys. Rev. A 64 042510
[7] Drake G W F and Morton D C 2007 Astrophys. J. Suppl. Ser. 170 251
[8] Rooij R V, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, and Vassen W 2011 Science 333 196
[9] Głowacki L and Migdałek J 2014 Phys. Rev. A 89 042503
[10] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, and Hu S M 2017 Phys. Rev. Lett. 119 263002
[11] Thomas K F, Ross J A, Henson B M, Shin D K, Baldwin K G H, Hodgman S S, and Truscott A G 2020 Phys. Rev. Lett. 125 013002
[12] Lewis S A, Pichanick F M J, and Hughes V W 1970 Phys. Rev. A 2 86
[13] Feinberg G and Sucher J 1971 Phys. Rev. Lett. 26 681
[14] Schad T A 2018 Astrophys. J. 865 31
[15] Zhang D H, Xie L Y, Jiang J, and Dong C Z 2019 Chin. Phys. Lett. 36 083401
[16] Li F, Yang Y J, Chen J, Liu X J, Wei Z Y, and Wang B B 2020 Chin. Phys. Lett. 37 113201
[17] Antognin A, Nez F, Schuhmann K, and Amaro F D 2013 Science 339 417
[18] Bezginov N, Valdez T, Horbatsch M, Marsman A, Vutha A C, and Hessels E A 2019 Science 365 1007
[19] Hodgman S S, Dall R G, Byron L J, Baldwin K G, Buckman S J, and Truscott A G 2009 Phys. Rev. Lett. 103 053002
[20] Pachucki K 2006 Phys. Rev. Lett. 97 013002
[21] Patkóš V, Yerokhin V A, and Pachucki K 2021 Phys. Rev. A 103 042809
[22] Zhang Y H, Tang L Y, Zhang X Z, and Shi T Y 2016 Phys. Rev. A 93 052516
[23] Yang S J, Mei X S, Shi T Y, and Qiao H X 2017 Phys. Rev. A 95 062505
[24] Pachucki K and Yerokhin V A 2009 Phys. Rev. A 79 062516
[25] Pachucki K and Yerokhin V A 2010 Phys. Rev. Lett. 104 070403
[26] Wan J J 2015 Chin. Phys. Lett. 32 023102
[27] Morton D C, Moffatt P, and Drake G W F 2011 Can. J. Phys. 89 129
[28] Mitroy J and Tang L Y 2013 Phys. Rev. A 88 052515
[29] Morton D C, Schulhoff E E, and Drake G W F 2015 J. Phys. B 48 235001
[30] Głowacki L 2020 At. Data Nucl. Data Tables 133 101344
[31] Smiciklas M and Shiner D 2010 Phys. Rev. Lett. 105 123001
[32] Kato K, Skinner T D G, and Hessels E A 2018 Phys. Rev. Lett. 121 143002
[33] Notermans R P and Vassen W 2014 Phys. Rev. Lett. 112 253002
[34] Qing B, Chen S H, Gao X, and Li J M 2008 Chin. Phys. Lett. 25 2448
[35] Lin C D, Johnson W R, and Dalgarno A 1977 Phys. Rev. A 15 154
[36] Indelicato P 1996 Phys. Rev. Lett. 77 3323
[37] Drake G W F 1971 Phys. Rev. A 3 908
[38] Jönsson P, He X, Froese F C, and Grant I P 2007 Comput. Phys. Commun. 177 597
[39] Froese F C, Gaigalas G, Jönsson P, and Bieroń J 2019 Comput. Phys. Commun. 237 184
[40] Jönsson P, Gaigalas G, Bieroń J, Fischer C F, and Grant I P 2013 Comput. Phys. Commun. 184 2197
[41] Khatri I, Goyal A, Aggarwal S, Singh A K, and Man M 2016 Radiat. Phys. Chem. 123 46
[42] Radžiūtė L, Gaidamauskas E, Gaigalas G, Li J G, Dong C Z, and Per J 2015 Chin. Phys. B 24 043103
[43] Jönsson P and Bieroń J 2010 J. Phys. B 43 074023
[44] Johnson W R, Savukov I M, Safronova U I, and Dalgarno A 2002 Astrophys. J. Suppl. Ser. 141 543
[45] Aggarwal K M, Kato T, Keenan F P, and Murakami I 2011 Phys. Scr. 83 015302
[46] Zhou F, Qu Y, Li J, and Wang J 2015 Phys. Rev. A 92 052505
[47] Li J, Jönsson P, Godefroid M, Dong C, and Gaigalas G 2012 Phys. Rev. A 86 052523
[48] Fano U 1965 Phys. Rev. 140 A67
[49] Olsen J, Godefroid M R, Jonsson P, Malmqvist P, and Fischer C F 1995 Phys. Rev. E 52 4499
[50] Nahar S N, Eissner W, Chen G X, and Pradhan A K 2003 Astron. & Astrophys. 408 789
[51] Kelleher D E and Podobedova L I 2008 J. Phys. Chem. Ref. Data 37 267
[52] Kaur M, Dar D F, Sahoo B K, and Arora B 2021 At. Data Nucl. Data Tables 137 101381
[53]Kramida A, Ralchenko Y, Reader J, and Team N A 2020 NIST Atomic Spectra Database (ver. 5.8) (Gaithersburg, MD: National Institute of Standards and Technology)
[54] Zhang T, Yan Z C, and Drake G W F 1996 Phys. Rev. Lett. 77 1715
[55] Sims J S and Hagstrom S A 2014 J. Chem. Phys. 140 224312
[56] Jiao L G, Zan L R, Zhu L, Zhang Y Z, and Ho Y K 2019 Phys. Rev. A 100 022509
[57] Bai Z D, Zhong Z X, Yan Z C, and Shi T Y 2021 Chin. Phys. B 30 023101
[58] He X K, Liu J P, Zhang X, Shen Y, and Zou H X 2018 Chin. Phys. B 27 83102
[59] Ynnerman A and Fischer C F 1995 Phys. Rev. A 51 2020
[60] Jönsson P and Fischer C F 1998 Phys. Rev. A 57 4967
[61] Chen M, Cheng K, and Johnson W 2001 Phys. Rev. A 64 042507
Related articles from Frontiers Journals
[1] Xiang Zhang, Jian-Peng Liu, Ji-Guang Li, Hong-Xin Zou. Parameters of Isotope Shifts for $2s2p{}^{3,1}\!P_{1} \to 2s^{2}{}^{1}\!S_0$ Transitions in Heavy Be-Like Ions[J]. Chin. Phys. Lett., 2019, 36(11): 113101
[2] Nagat Elkahwagy, Atif Ismail, S. M. A. Maize, K. R. Mahmoud. Theoretical Investigation on the Low-Lying States of LaP Molecule[J]. Chin. Phys. Lett., 2018, 35(10): 113101
[3] WAN Jian-Jie. Shannon Entropy as a Measurement of the Information in a Multiconfiguration Dirac–Fock Wavefunction[J]. Chin. Phys. Lett., 2015, 32(02): 113101
[4] DING Xiao-Bin, DONG Chen-Zhong, Gerard O'Sullivan. Shake-up Processes in the 3d Photoionization of Sr I and the Subsequent Auger Decay[J]. Chin. Phys. Lett., 2012, 29(6): 113101
Viewed
Full text


Abstract