Chin. Phys. Lett.  2021, Vol. 38 Issue (10): 107401    DOI: 10.1088/0256-307X/38/10/107401
High $T_{\rm c}$ Superconductivity in Heavy Rare Earth Hydrides
Hao Song1, Zihan Zhang1, Tian Cui2,1*, Chris J. Pickard3,4, Vladimir Z. Kresin5, and Defang Duan1*
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
2Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
3Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
4Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
5Lawrence Berkeley Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
Cite this article:   
Hao Song, Zihan Zhang, Tian Cui et al  2021 Chin. Phys. Lett. 38 107401
Download: PDF(3378KB)   PDF(mobile)(6825KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Sulfur and lanthanum hydrides under compression display superconducting states with high observed critical temperatures. It has been recently demonstrated that carbonaceous sulfur hydride displays room temperature superconductivity. However, this phenomenon has been observed only at very high pressure. Here, we theoretically search for superconductors with very high critical temperatures, but at much lower pressures. We describe two of such sodalite-type clathrate hydrides, YbH$_{6}$ and LuH$_{6}$. These hydrides are metastable and are predicted to superconduct with $T_{\rm c} \sim 145$ K at 70 GPa and $T_{\rm c} \sim 273$ K at 100 GPa, respectively. This striking result is a consequence of the strong interrelationship between the $f$ states present at the Fermi level, structural stability, and the final $T_{\rm c}$ value. For example, TmH$_{6}$, with unfilled 4$f$ orbitals, is stable at 50 GPa, but has a relatively low value of $T_{\rm c}$ of 25 K. The YbH$_{6}$ and LuH$_{6}$ compounds, with their filled $f$-shells, exhibit prominent phonon “softening”, which leads to a strong electron-phonon coupling, and as a result, an increase in $T_{\rm c}$.
Received: 20 August 2021      Express Letter Published: 08 September 2021
PACS:  74.25.Kc (Phonons)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 12122405, 51632002, and 11974133), the Program for Changjiang Scholars and Innovative Research Team in Universities (Grant No. IRT_15R23). C.J.P. acknowledges financial support from the Engineering and Physical Sciences Research Council (Grant No. EP/P022596/1).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Hao Song
Zihan Zhang
Tian Cui
Chris J. Pickard
Vladimir Z. Kresin
and Defang Duan
[1] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[2] Mao H K and Hemley R J 1994 Rev. Mod. Phys. 66 671
[3] Loubeyre P, Occelli F, and LeToullec R 2002 Nature 416 613
[4] Huang X, Li F, Huang Y, Wu G, Li X, Zhou Q, Liu B, and Cui T 2016 Chin. Phys. B 25 037401
[5] Dalladay-Simpson P, Howie R T, and Gregoryanz E 2016 Nature 529 63
[6] Dias R P and Silvera I F 2017 Science 355 715
[7] Monserrat B, Drummond N D, Dalladay-Simpson P, Howie R T, López R P, Gregoryanz E, Pickard C J, and Needs R J 2018 Phys. Rev. Lett. 120 255701
[8] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[9] Duan D F, Liu Y X, Ma Y B, Shao Z, Liu B B, and Cui T 2017 Natl. Sci. Rev. 4 121
[10] Duan D F, Yu H Y, Xie H, and Cui T 2019 J. Supercond. Novel Magn. 32 53
[11]Bi T, Zarifi N, Terpstra T, and Zurek E 2019 Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Amsterdam: Elsevier) pp 1–36
[12] Duan D F, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, and Cui T 2015 Sci. Rep. 4 6968
[13] Duan D F, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B, and Cui T 2015 Phys. Rev. B 91 180502(R)
[14] Liu H, Naumov I I, Hoffmann R, Ashcroft N W, and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[15] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, and Ma Y 2017 Phys. Rev. Lett. 119 107001
[16] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[17] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528
[18] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, and Ohishi Y 2016 Nat. Phys. 12 835
[19] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, and Shylin S I 2015 Nature 525 73
[20] Hong F, Yang L, Shan P, Yang P, Liu Z, Sun J, Yin Y, Yu X, Cheng J, and Zhao Z 2020 Chin. Phys. Lett. 37 107401
[21] Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, and Dias R P 2020 Nature 586 373
[22] Ma J, Kuang J, Cui W, Chen J, Gao K, Hao J, Shi J, and Li Y 2021 Chin. Phys. Lett. 38 027401
[23] Song J, Fabbris G, Bi W, Haskel D, and Schilling J S 2018 Phys. Rev. Lett. 121 037004
[24] Pickard C J and Needs R J 2011 J. Phys.: Condens. Matter 23 053201
[25] Pickard C J and Needs R J 2006 Phys. Rev. Lett. 97 045504
[26] Olsen J S, Buras B, Gerward L, Johansson B, Lebech B, Skriver H L, and Steenstrup S 1984 Phys. Scr. 29 503
[27] Wang H, John S T, Tanaka K, Iitaka T, and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[28] Li Y, Hao J, Liu H, Tse J S, Wang Y, and Ma Y 2015 Sci. Rep. 5 9948
[29] Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Liu G, Wang H, and Ma Y 2021 arXiv:2103.16282 [cond-mat.supr-con]
[30] Troyan I A, Semenok D V, Kvashnin A G, Sadakov A V, Sobolevskiy O A, Pudalov V M, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G et al. 2021 Adv. Mater. 33 2006832
[31] Segall M D, Shah R, Pickard C J, and Payne M C 1996 Phys. Rev. B 54 16317
[32] Song H, Duan D, Cui T, and Kresin V Z 2020 Phys. Rev. B 102 014510
[33] Xie H, Yao Y, Feng X, Duan D, Song H, Zhang Z, Jiang S, Redfern S A T, Kresin V Z, Pickard C J, and Cui T 2020 Phys. Rev. Lett. 125 217001
[34] Gor'kov L P and Kresin V Z 2018 Rev. Mod. Phys. 90 011001
[35] Gor'kov L P and Kresin V Z 2016 Sci. Rep. 6 7
[36] Semenok D V, Kruglov I A, Savkin I A, Kvashnin A G, and Oganov A R 2020 Curr. Opin. Solid State Mater. Sci. 24 100808
[37] Zhou D, Semenok D, Duan D, Xie H, Huang X, Chen W, Li X, Liu B, Oganov A R, and Cui T 2020 Sci. Adv. 6 eaax6849
[38] Zhou D, Semenok D V, Xie H, Huang X L, Duan D F, Aperis A, Oppeneer P M, Galasso M, Kartsev A I, Kvashnin A G, Oganov A R, and Cui T 2020 J. Am. Chem. Soc. 142 2803
[39] Semenok D V, Zhou D, Kvashnin A G, Huang X, Galasso M, Kruglov I A, Ivanova A G, Gavriliuk A G, Chen W, Tkachenko N V, Boldyrev A I, Troyan I, Oganov A R, and Cui T 2021 J. Phys. Chem. Lett. 12 32
[40] Pickard C J, Errea I, and Eremets M I 2020 Annu. Rev. Condens. Matter Phys. 11 57
Related articles from Frontiers Journals
[1] Jiang Hong Man, Ze Cheng. Cooper Molecules: Second Pairing of Cooper Pairs in Gapless Superconductor CeCoIn$_5$[J]. Chin. Phys. Lett., 2019, 36(10): 107401
[2] CAO Chao**, DAI Jian-Hui, ** . Electronic Structure of KFe2Se2 from First-Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(5): 107401
[3] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 107401
[4] ZHAO Juan, FENG Wan-Xiang, LIU Zhi-Ming, MA Yan-Ming, HE Zhi, CUI Tian, ZOU Guang-Tian. Structural Investigation of Solid Methane at High Pressure[J]. Chin. Phys. Lett., 2010, 27(6): 107401
[5] WANG Yue-Qin, YUAN Lan-Feng, YANG Jin-Long. Lattice Dynamics and Superconductivity of RuB2: A First-Principles Study[J]. Chin. Phys. Lett., 2008, 25(8): 107401
[6] FAN Wei. Anti-Correlation between Energy-Gap and Phonon Energy for Cuprate Bi2212 Superconductor[J]. Chin. Phys. Lett., 2008, 25(6): 107401
[7] LUO Jian-Lin, ZHANG Jie, CHEN Zhao-Jia, BAI Hai-Yang, WANG Yu-Peng, MENG Ji-Bao, JIN Duo, REN Zhi-An, CHE Guang-Can, ZHAO Zhong-Xian. Low Temperature Specific Heat of Superconducting MgB2[J]. Chin. Phys. Lett., 2001, 18(6): 107401
Full text