Chin. Phys. Lett.  2021, Vol. 38 Issue (10): 103701    DOI: 10.1088/0256-307X/38/10/103701
ATOMIC AND MOLECULAR PHYSICS |
Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap
Zhu Ma1,2†, Chengyin Han1†, Xunda Jiang1,2, Ruihuan Fang1,2, Yuxiang Qiu1,2, Minhua Zhao1,2, Jiahao Huang1, Bo Lu1*, and Chaohong Lee1,2*
1Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China
Cite this article:   
Zhu Ma, Chengyin Han, Xunda Jiang et al  2021 Chin. Phys. Lett. 38 103701
Download: PDF(1175KB)   PDF(mobile)(1277KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the production of $^{87}$Rb Bose–Einstein condensate in an asymmetric crossed optical dipole trap (ACODT) without the need of an additional dimple laser. In our experiment, the ACODT is formed by two laser beams with different radii to achieve efficient capture and rapid evaporation of laser cooled atoms. Compared to the cooling procedure in a magnetic trap, the atoms are firstly laser cooled and then directly loaded into an ACODT without the pre-evaporative cooling process. In order to determine the optimal parameters for evaporation cooling, we optimize the power ratio of the two beams and the evaporation time to maximize the final atom number left in the ACODT. By loading about $6\times10^{5}$ laser cooled atoms in the ACODT, we obtain a pure Bose–Einstein condensate with about $1.4\times10^{4}$ atoms after 19 s evaporation. Additionally, we demonstrate that the fringe-type noises in optical density distributions can be reduced via principal component analysis, which correspondingly improves the reliability of temperature measurement.
Received: 20 August 2021      Published: 26 September 2021
PACS:  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  37.10.De (Atom cooling methods)  
  64.70.fm (Thermodynamics studies of evaporation and condensation)  
Fund: Supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), the National Natural Science Foundation of China (Grant Nos. 12025509 and 11874434), the Science and Technology Program of Guangzhou, China (Grant Nos. 201904020024 and 201804010497), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030313988), and the Fundamental Research Funds for the Central Universities (Grant No. 2021qntd28).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/10/103701       OR      https://cpl.iphy.ac.cn/Y2021/V38/I10/103701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhu Ma
Chengyin Han
Xunda Jiang
Ruihuan Fang
Yuxiang Qiu
Minhua Zhao
Jiahao Huang
Bo Lu
and Chaohong Lee
[1] Greiner M, Mandel O, Esslinger T, Hänsch T W, and Bloch I 2002 Nature 415 39
[2] Léonard J, Morales A, Zupancic P, Donner T, and Esslinger T 2017 Science 358 1415
[3] Clark L W, Feng L, and Chin C 2016 Science 354 606
[4] Braun S, Friesdorf M, Hodgman S S, Schreiber M, Ronzheimer J P, Riera A, del Rey M, Bloch I, Eisert J, and Schneider U 2015 Proc. Natl. Acad. Sci. USA 112 3641
[5] Lee C H, Huang J H, Deng H M, Dai H, and Xu J 2012 Front. Phys. 7 109
[6] Gross C, Zibold T, Nicklas E, Estève J, and Oberthaler M K 2010 Nature 464 1165
[7] Lee C H 2006 Phys. Rev. Lett. 97 150402
[8] SøR A, Duan L M, Cirac J I, and Zoller P 2001 Nature 409 63
[9] Léonard J, Morales A, Zupancic P, Esslinger T, and Donner T 2017 Nature 543 87
[10] Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, and Pan J W 2014 Nat. Phys. 10 314
[11] Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, and Pan J W 2016 Nat. Phys. 12 783
[12] Yang B, Chen Y Y, Zheng Y G, Sun H, Dai H N, Guan X W, Yuan Z S, and Pan J W 2017 Phys. Rev. Lett. 119 165701
[13] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, and Pan J W 2016 Science 354 83
[14] Peng P, Huang L H, Li D H, Wang P J, Meng Z M, Zhang J 2018 Chin. Phys. Lett. 35 063201
[15] Nawaz K S, Mi C D, Chen L C, Wang P J, and Zhang J 2019 Chin. Phys. Lett. 36 043201
[16] Chen L C, Wang P J, Meng Z M, Huang L H, Cai H, Wang D W, Zhu S Y, and Zhang J 2018 Phys. Rev. Lett. 120 193601
[17] Yang S F, Xu Z T, Wang K, Li X F, Zhai Y Y, and Chen X Z 2019 Chin. Phys. Lett. 36 080302
[18] Yang S F, Zhou T W, Li C, Yang K X, Zhai Y Y, Yue X G, and Chen X Z 2020 Chin. Phys. Lett. 37 040301
[19] Chen S, Zhou X J, Yang F, Xia L, Wang Y Q, and Chen X Z 2004 Chin. Phys. Lett. 21 2227
[20] Tang P J, Peng P, Li Z H, Chen X Z, Li X P, and Zhou X J 2019 Phys. Rev. A 100 013618
[21] Deng L, Hagley E W, Cao Q, Wang X R, Luo X Y, Wang R Q, Payne M G, Yang F, Zhou X J, Chen X Z, and Zhan M S 2010 Phys. Rev. Lett. 105 220404
[22] Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, and Jiang K J 2019 Phys. Rev. Lett. 122 110402
[23] Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, and Wu H B 2016 Science 353 371
[24] Li B, Jiang X J, Li X L, Hai W H, and Wang Y Z 2019 Chin. Phys. B 28 100303
[25] Hu Z F, Liu C P, Liu J M, and Wang Y Z 2018 Opt. Express 26 20122
[26] Gao K Y, Luo X Y, Jia F D, Yu C H, Zhang F, Yin J P, Xu L, You L, and Wang R Q 2014 Chin. Phys. Lett. 31 063701
[27] Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K, and You L 2017 Science 355 620
[28] Qiu L Y, Liang H Y, Yang Y B, Yang H X, Tian T, Xu Y, and Duan L M 2020 Sci. Adv. 6 eaba7292
[29] Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198
[30] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[31] Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, and Ketterle W 1996 Phys. Rev. Lett. 77 416
[32] Esslinger T, Bloch I, and Hänsch T W 1998 Phys. Rev. A 58 R2664
[33] Wang Y Z, Zhou S Y, Long Q, Zhou S Y, and Fu H X 2003 Chin. Phys. Lett. 20 799
[34] Wang R Q, Liu M C, Minardi F, and Kasevich M 2007 Phys. Rev. A 75 013610
[35] Yan B, Cheng F, Ke M, Li X L, Tang J Y, and Wang Y Z 2009 Chin. Phys. B 18 4259
[36] Fortagh J, Grossmann A, Zimmermann C, and Hänsch T W 1998 Phys. Rev. Lett. 81 5310
[37] Grimm R, Weidemüller M, and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95
[38] Barrett M D, Sauer J A, and Chapman M S 2001 Phys. Rev. Lett. 87 010404
[39] Weber T, Herbig J, Mark M, Nägerl H C, and Grimm R 2003 Science 299 232
[40] Fazal R, Li J Z, Chen Z W, Qin Y, Lin Y Y, Zhang Z X, Zhang S C, Huang W, Yan H, and Zhu S L 2020 Chin. Phys. Lett. 37 036701
[41] Rychtarik D, Engeser B, Nägerl H C, and Grimm R 2004 Phys. Rev. Lett. 92 173003
[42] Kinoshita T, Wenger T, and Weiss D S 2005 Phys. Rev. A 71 011602(R)
[43] Lin Y J, Perry A R, Compton R L, Spielman I B, and Porto J V 2009 Phys. Rev. A 79 063631
[44] Duan Y F, Jiang B N, Sun J F, Liu K K, Xu Z, and Wang Y Z 2013 Chin. Phys. B 22 056701
[45] Xie D Z, Wang D Y, Gou W, Bu W H, and Yan B 2018 J. Opt. Soc. Am. B 35 500
[46] Hung C L, Zhang X B, Gemelke N, and Chin C 2008 Phys. Rev. A 78 011604(R)
[47] Huang C Y, Chen C C, Sun L A, Liao G B, Wu K S, Lin Y J, and Chang M S 2017 J. Phys. B 50 155302
[48] Jacob D, Mimoun E, De Sarlo L, Weitz M, Dalibard J, and Gerbier F 2011 New J. Phys. 13 065022
[49] Olson A J, Niffenegger R J, and Chen Y P 2013 Phys. Rev. A 87 053613
[50] Zhang S C, Chen J F, Liu C, Zhou S Y, Loy M M T, Wong G K L, and Du S W 2012 Rev. Sci. Instrum. 83 073102
[51] Walker T, Sesko D, and Wieman C 1990 Phys. Rev. Lett. 64 408
[52] Townsend C G, Edwards N H, Zetie K P, Cooper C J, Rink J, and Foot C J 1996 Phys. Rev. A 53 1702
[53] Niu L X, Guo X X, Zhan Y, Chen X Z, Liu W M, and Zhou X J 2018 Appl. Phys. Lett. 113 144103
Viewed
Full text


Abstract