Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 017501    DOI: 10.1088/0256-307X/38/1/017501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
BaCuS$_{2}$: A Superconductor with Moderate Electron-Electron Correlation
Yuhao Gu1, Xianxin Wu1, Kun Jiang1, and Jiangping Hu1,2*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2CAS Center of Excellence in Topological Quantum Computation and Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Yuhao Gu, Xianxin Wu, Kun Jiang et al  2021 Chin. Phys. Lett. 38 017501
Download: PDF(4790KB)   PDF(mobile)(5531KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that the layered-structure BaCuS$_{2}$ is a moderately correlated electron system in which the electronic structure of the CuS layer bears a resemblance to those in both cuprates and iron-based superconductors. Theoretical calculations reveal that the in-plane $d$–$p$ $\sigma^*$-bonding bands are isolated near the Fermi level. As the energy separation between the $d$ and $p$ orbitals are much smaller than those in cuprates and iron-based superconductors, BaCuS$_{2}$ is expected to be moderately correlated. We suggest that this material is an ideal system to study the competitive/collaborative nature between two distinct superconducting pairing mechanisms, namely the conventional BCS electron-phonon interaction and the electron-electron correlation, which may be helpful to establish the elusive mechanism of unconventional high-temperature superconductivity.
Received: 16 September 2020      Published: 18 November 2020
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFA0303100), the National Natural Science Foundation of China (Grant No. 11888101), and the Strategic Priority Research Program of CAS (Grant No. XDB28000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/017501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/017501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuhao Gu
Xianxin Wu
Kun Jiang
and Jiangping Hu
[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] An J M and Pickett W E 2001 Phys. Rev. Lett. 86 4366
[3] Gao M, Lu Z Y and Xiang T 2015 Phys. Rev. B 91 045132
[4] Gao M, Lu Z Y and Xiang T 2015 Physics 44 421 (in Chinese)
[5] Kortus J, Mazin I I, Belashchenko K D, Antropov V P and Boyer L L 2001 Phys. Rev. Lett. 86 4656
[6] Xi X X 2008 Rep. Prog. Phys. 71 116501
[7] Zhang F and Rice T 1988 Phys. Rev. B 37 3759
[8] Zhong Y, Wang Y, Han S, Lv Y F, Wang W L, Zhang D, Ding H, Zhang Y M, Wang L, He K et al. 2016 Sci. Bull. 61 1239
[9]Franck J 1994 Physical Properties of High-Temperature Superconductivity (Singapore: World Scientific) vol 4
[10] Millis A, Monien H and Pines D 1990 Phys. Rev. B 42 167
[11] Scalapino D J 1995 Phys. Rep. 250 329
[12] Dai P, Hu J and Dagotto E 2012 Nat. Phys. 8 709
[13] Seo K, Bernevig B A and Hu J 2008 Phys. Rev. Lett. 101 206404
[14] Si Q and Abrahams E 2008 Phys. Rev. Lett. 101 076401
[15] Liu R, Wu T, Wu G, Chen H, Wang X, Xie Y, Ying J, Yan Y, Li Q, Shi B et al. 2009 Nature 459 64
[16] Rebec S, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R and Shen Z X 2017 Phys. Rev. Lett. 118 067002
[17] Qiong W, Huaxue Z, Yanling W, Lili H, Shunli N, Yichao T, Fei S, Fang Z, Xiaoli D, Zhongxian Z et al. 2020 Chin. Phys. Lett. 37 097802
[18] Hu J, Le C and Wu X 2015 Phys. Rev. X 5 041012
[19] Hu J 2016 Sci. Bull. 61 561
[20] Le C, Zeng J, Gu Y, Cao G H and Hu J 2018 Sci. Bull. 63 957
[21] Hu J, Gu Y and Le C 2018 Sci. Bull. 63 1338
[22] Gu Y, Zhang Q, Le C, Li Y, Xiang T and Hu J 2019 Phys. Rev. B 100 165405
[23] Azuma M, Hiroi Z, Takano M, Bando Y and Takeda Y 1992 Nature 356 775
[24] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262
[25] Cava R, Zandbergen H, Batlogg B, Eisaki H, Takagi H, Krajewski J, Peck W, Gyorgy E and Uchida S 1994 Nature 372 245
[26] Mattheiss L 1995 Solid State Commun. 94 741
[27] Singh D J and Pickett W E 1995 Phys. Rev. B 51 8668
[28]For more details see our Supplementary Information.
[29]In our DFT+U calculations, antiferromagnetism always quenches ($U=0$–10 eV) in BaCuS$_{2}$.
[30]Poole C K, Farach H A and Creswick R J 1999 Handbook of Superconductivity (Amsterdam: Elsevier)
[31] Jung M C, Kang C J, Min B and Lee K W 2013 Phys. Rev. B 87 144509
[32] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[33] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[34] Hu J and Hao N 2012 Phys. Rev. X 2 021009
[35] Hao N and Hu J 2014 Phys. Rev. X 4 031053
[36] Graser S, Maier T, Hirschfeld P and Scalapino D 2009 New J. Phys. 11 025016
[37] Kemper A F, Maier T A, Graser S, Cheng H P, Hirschfeld P and Scalapino D 2010 New J. Phys. 12 073030
[38] Wu X, Yuan J, Liang Y, Fan H and Hu J 2014 Europhys. Lett. 108 27006
[39] Wu X, Yang F, Le C, Fan H and Hu J 2015 Phys. Rev. B 92 104511
[40] Di S D, Wu X, Fink M, Hanke W and Thomale R 2019 Phys. Rev. B 99 201106
[41] Hu J and Ding H 2012 Sci. Rep. 2 381
[42]Ba$_{3}$Cu$_{2}$S$_{5}$ shares similar electronic physics with BaCuS$_{2}$, and Cu is also in square pyramidal coordination. Please find more details in our Supplementary Information.
Viewed
Full text


Abstract