Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 017401    DOI: 10.1088/0256-307X/38/1/017401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconducting Properties and Absence of Time Reversal Symmetry Breaking in the Noncentrosymmetric Superconducting Compounds Ta$_{x}$Re$_{1-x}$($0.1\leq x \leq0.25$)
Chun-Qiang Xu1, Yi Liu2, Wei Zhou3, Jia-Jia Feng1, Sen-Wei Liu1, Yu-Xing Zhou4, Hao-Bo Wang3, Zhi-Da Han3, Bin Qian3, Xue-Fan Jiang3, Xiao-Feng Xu2,3, Wei Ye1, Zhi-Xiang Shi1*, Xiang-Lin Ke5*, and Pabitra-Kumar Biswas6*
1 School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
2Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
3School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
4Department of Physics, Zhejiang University, Hangzhou 310007, China
5Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-2320, USA
6ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
Cite this article:   
Chun-Qiang Xu, Yi Liu, Wei Zhou et al  2021 Chin. Phys. Lett. 38 017401
Download: PDF(1344KB)   PDF(mobile)(1322KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Unconventional superconductivity, in particular, in noncentrosymmetric systems, has been a long-sought topic in condensed matter physics. Recently, Re-based superconductors have attracted great attention owing to the potential time-reversal symmetry breaking in their superconducting states. We report the superconducting properties of noncentrosymmetric compounds Ta$_{x}$Re$_{1-x}$ with $0.1\leq x \leq0.25$, and find that the superconducting transition temperature reaches a maximum of $\sim$8 K at the optimal level $x=0.15$. Nevertheless, muon-spin rotation and relaxation measurements reveal no time-reversal symmetry breaking existing in its superconducting state, which is in sharp contrast to both centrosymmetric Re metal and many other noncentrosymmetric Re-based superconductors.
Received: 28 October 2020      Published: 06 January 2021
PACS:  ????  
Fund: Supported by the National Key R$\&$D Program of China (Grant No. 2018YFA0704300), the National Natural Science Foundation of China (Grant Nos. U1732162, 11974061, 11704047, U1832147 and 11674054), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/017401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/017401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chun-Qiang Xu
Yi Liu
Wei Zhou
Jia-Jia Feng
Sen-Wei Liu
Yu-Xing Zhou
Hao-Bo Wang
Zhi-Da Han
Bin Qian
Xue-Fan Jiang
Xiao-Feng Xu
Wei Ye
Zhi-Xiang Shi
Xiang-Lin Ke
and Pabitra-Kumar Biswas
[1] Smidman M, Salamon M B, Yuan H Q and Agterberg D F 2017 Rep. Prog. Phys. 80 036501
[2] Nishiyama M, Inada Y and Zheng G Q 2005 Phys. Rev. B 71 220505(R)
[3] Takeya H, Hirata K, Yamaura K, Togano K, Massalami M E, Rapp R, Chaves F A and Ouladdiaf B 2005 Phys. Rev. B 72 104506
[4] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006
[5] Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002
[6] Takeya H, Massalami M E, Kasahara S and Hirata K 2007 Phys. Rev. B 76 104506
[7] Harada S, Zhou J J, Yao Y G, Inada Y and Zheng G Q 2012 Phys. Rev. B 86 220502(R)
[8] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. X 5 011013
[9] Guan S Y, Chen P J, Chu M W, Sankar R, Chou F C, Jeng H T, Chang C S and Chuang T M 2016 Sci. Adv. 2 e1600894
[10] Carnicom E M, Xie W W, Klimczuk T, Lin J J, Górnicka K, Sobczak Z, Ong N P and Cava R J 2018 Sci. Adv. 4 eaar7969
[11] Mayoh D A, Hillier A D, Götze K, Paul D M, Balakrishnan G and Lees M R 2018 Phys. Rev. B 98 014502
[12] Górnicka K, Gui X, Wiendlocha B, Nguyen L T, Xie W W, Cava R J and Klimczuk T 2020 Adv. Funct. Mater. 2007960
[13] Singh R P, Hillier A D, Mazidian B, Quintanilla J, Annett J F, Paul D M, Balakrishnan G and Lees M R 2014 Phys. Rev. Lett. 112 107002
[14] Bauer E, Sekine C, Sai U, Rogl P, Biswas P K and Amato A 2014 Phys. Rev. B 90 054522
[15] Singh D, Barker J A T, Thamizhavel A, Paul D M, Hillier A D and Singh R P 2017 Phys. Rev. B 96 180501(R)
[16] Singh D, Sajilesh K P, Barker J A T, Paul D M, Hillier A D and Singh R P 2018 Phys. Rev. B 97 100505(R)
[17] Shang T, Pang G M, Baines C, Jiang W B, Xie W, Wang A, Medarde M, Pomjakushina E, Shi M, Mesot J, Yuan H Q and Shiroka T 2018 Phys. Rev. B 97 020502(R)
[18] Shang T, Smidman M, Ghosh S K, Baines C, Chang L J, Gawryluk D J, Barker J A T, Singh R P, Paul D M, Balakrishnan G, Pomjakushina E, Shi M, Medarde M, Hillier A D, Yuan H Q, Quintanilla J, Mesot J and Shiroka T 2018 Phys. Rev. Lett. 121 257002
[19] Matano K, Yatagai R, Maeda S and Zheng G Q 2016 Phys. Rev. B 94 214513
[20] Pang G M, Nie Z Y, Wang A, Singh D, Xie W, Jiang W B, Chen Y, Singh R P, Smidman M and Yuan H Q 2018 Phys. Rev. B 97 224506
[21] Singh D, Barker J A T, Arumugam T, Hillier A D, Paul D M and Singh R P 2018 J. Phys.: Condens. Matter 30 075601
[22] Aczel A A, Williams T J, Goko T, Carlo J P, Yu W, Uemura Y J, Klimczuk T, Thompson J D, Cava R J and Luke G M 2010 Phys. Rev. B 82 024520
[23] Barker J A T, Breen B D, Hanson R, Hillier A D, Lees M R, Balakrishnan G, Paul D M and Singh R P 2018 Phys. Rev. B 98 104506
[24] Biswas P K, Hillier A D, Lees M R and Paul D M 2012 Phys. Rev. B 85 134505
[25] Wang K F and Petrovic C 2012 Phys. Rev. B 86 024522
[26] Xu X, Chen B, Jiao W H, Chen B, Niu C Q, Li Y K, Yang J H, Bangura A F, Ye Q L, Cao C, Dai J H, Cao G and Hussey N E 2013 Phys. Rev. B 87 224507
[27] Xu C Q, Li B, Feng J J, Jiao W H, Li Y K, Liu S W, Zhou Y X, Sankar R, Zhigadlo N D, Wang H B, Han Z D, Qian B, Ye W, Zhou W, Shiroka T, Biswas P K, Xu X F and Shi Z X 2019 Phys. Rev. B 100 134503
[28] Sonier J E, Brewer J H and Kiefl R F 2000 Rev. Mod. Phys. 72 769
[29] Brandt E H 2003 Phys. Rev. B 68 054506
[30] Padamsee H, Neighbor J E and Shiffman C A 1973 J. Low Temp. Phys. 12 387
[31] Carrington A and Manzano F 2003 Physica C 385 205
[32]Tinkham M 1975 Introduction to Superconductivity (New York: McGraw-Hill)
[33] Prozorov R and Giannetta R W 2006 Supercond. Sci. Technol. 19 R41
[34] Khasanov R, Conder K, Pomjakushina E, Amato A, Baines C, Bukowski Z, Karpinski J, Katrych S, Klauss H H, Luetkens H, Shengelaya A and Zhigadlo N D 2008 Phys. Rev. B 78 220510(R)
[35] Biswas P K, Balakrishnan G, Paul D M, Tomy C V, Lees M R and Hillier A D 2010 Phys. Rev. B 81 092510
[36] Biswas P K, Krzton-Maziopa A, Khasanov R, Luetkens H, Pomjakushina E, Conder K and Amato A 2013 Phys. Rev. Lett. 110 137003
[37] Paglione J and Greene R L 2010 Nat. Phys. 6 645
[38] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Nature 418 758
[39] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M and Takagi H 2001 Science 294 2518
[40] Nakajima Y, Nakagawa T, Tamegai T and Harima H 2008 Phys. Rev. Lett. 100 157001
[41] Biswas P K, Balakrishnan G, Paul D M, Lees M R and Hillier A D 2011 Phys. Rev. B 83 054517
[42] Kubo R 1981 Hyperfine Interact. 8 731
Viewed
Full text


Abstract