Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097403    DOI: 10.1088/0256-307X/37/9/097403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Dependent Point-Contact Spectroscopy of Superconducting PbTaSe$_2$ Single Crystals
Hai Zi1,2, Ling-Xiao Zhao2, Xing-Yuan Hou2, Lei Shan2, Zhian Ren2, Gen-Fu Chen2, and Cong Ren1,2*
1School of Physics and Astronomy, Yunnan University, Kunming 650500, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
Cite this article:   
Hai Zi, Ling-Xiao Zhao, Xing-Yuan Hou et al  2020 Chin. Phys. Lett. 37 097403
Download: PDF(5795KB)   PDF(mobile)(5796KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop an experimental tool to investigate the order parameter of superconductors by combining point-contact spectroscopy measurement with high-pressure technique. It is demonstrated for the first time that planar point-contact spectroscopy measurement on noncentrosymmetric superconducting PbTaSe$_2$ single crystals is systematically subjected to hydrostatic pressures up to 12.1 kbar. Under such a high pressure, the normal-state contact resistance is sensitive to the applied pressure, reflecting the underlying variation of contact transparency upon pressures. In a superconducting state, the pressure dependence of the energy gap $\varDelta_0$ and the critical temperature $T_{\rm c}$ for gap opening/closing are extracted based on a generalized Blond–Tinkham–Klapwijk model. The gap ratio $2\varDelta_0/k_{_{\rm B}}T_{\rm c}$ indicates a crossover from weak coupling to strong coupling in electron pairing strength upon pressure for PbTaSe$_2$. Our experimental results show the accessibility and validity of high-pressure point-contact spectroscopy, offering rich information about high-pressure superconductivity.
Received: 20 July 2020      Published: 24 August 2020
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  74.62.Fj (Effects of pressure)  
Fund: Supported by the National Science Foundation of China (Grant Nos. 11574373 and 11774303), and the Joint Fund of Yunnan Provincial Science and Technology Department (Grant No. 2019FY003008).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/097403       OR      http://cpl.iphy.ac.cn/Y2020/V37/I9/097403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hai Zi
Ling-Xiao Zhao
Xing-Yuan Hou
Lei Shan
Zhian Ren
Gen-Fu Chen
and Cong Ren
[1] Mao H K, Chen X J, Ding Y, Li B and Wang L 2018 Rev. Mod. Phys. 90 015007
Schilling J S 2007 High-Pressure Effects in Handbook of High-Temperature Superconductivity ed Schrieffer J R and Brooks S (Berlin: Springer)
[2]Lorenz B and Chu C W 2005 High Pressure Effect on Superconductivity in Frontiers in Superconducting Materials ed Narlikar A V (Berlin: Springer-Verlag)
[3] Sun L, Chen X J, Guo J, Gao P et al. 2012 Nature 483 67
Alireza P L, Chris Ko Y T, Gillett J, Petrone M et al. 2009 J. Phys.: Condens. Matter 21 012208
[4] Chu C W and Lorenz B 2009 Physica C 469 385
[5]Liu Z Y, Dong Q X, Shan P F, Wang Y Y, Dai J H et al. 2020 Chin. Phys. Lett. 37 047102
[6] Gu Q, Xing D and Sun J 2019 Chin. Phys. Lett. 36 097401
Jia Y T, Zhao J F, Zhang S J, Yu S, Dai G Y et al. 2019 Chin. Phys. Lett. 36 087401
[7] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[8] Chu C W, Smith T F and Gardner W E 1970 Phys. Rev. B 1 214
[9] Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X and Cheng J G 2018 Nat. Commun. 9 380
Shah P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S and Cheng J G 2018 Phys. Rev. B 97 020508(R)
[10] Demuer A, Marcenat C, Thomasson J, Calemczuk R, Salce B, Lejay P, Braithwaite D and Flouquet J 2000 J. Low Temp. Phys. 120 245
[11]Wilhelm H 2003 A C-Calorimetry at High Pressure, Low Temperature in Advances in Solid State Physics ed Kramer B (Berlin: Springer)
[12] Butz T, Chappert J, Dufresne J F, Hartmann O, Karlsson E, Lindgren B, Norlin L O, Podini P and Yaouanc A 1980 Phys. Lett. A 75 321
Khasanov R, Guguchia Z, Maisuradze A, Andreica D, Elender M, Raselli A, Shermadini Z, Goko T, Knecht F, Morenzoni E and Amato A 2016 High Press. Res. 36 140
[13] Zhu J, Yang Z X, Hou X Y, Guan T, Zhang Q T, Li Y Q, Han X F, Zhang J, Li C H, Shan L, Chen G F and Ren C 2015 Appl. Phys. Lett. 106 202601
[14]Naidyuk Y G and Yanson I K 2004 Point Contact Spectroscopy in Springer Series in Solid-State Science (Berlin: Springer) vol 145
[15] Deutscher G 2005 Rev. Mod. Phys. 77 109
[16] Ali N, Gibson Q, Klimczuk T and Cava R J 2014 Phys. Rev. B 89 020505(R)
[17] Sankar R, Narsinga Rao G, Panneer Muthuselvam I, Chang T R et al. 2017 J. Phys.: Condens. Matter 29 095601
[18] Kaluarachchi U, Deng Y, Besser F, Sun K, Zhou L et al. 2017 Phys. Rev. B 95 224508
[19] Xu C Q, Sankar R, Zhou W, Li B, Han Z D, Qian B, Dai J H, Cui H, Bangura A F, Chou F C and Xu X 2017 Phys. Rev. B 96 064528
[20] Blonder G E and Tinkham M 1983 Phys. Rev. B 27 112
[21] Naidyuk G, Kvitnitskaya O E, Gamayunova N V, Bashlakov D L, Tyutrina L V, Fuchs G, Huhne R, Chareev D A and Vasiliev A N 2017 Phys. Rev. B 96 094517
[22] Mondal M, Joshi B, Kumar S, Kamlapure A, Ganguli S C, Thamizhavel A, Mandal S, Ramakrishnan S and Raychaudhuri P 2012 Phys. Rev. B 86 094520
[23] de Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett. 74 1657
[24] Mikrajuddin A, Shi G, Kim H K and Okuyama K 1999 Mater. Sci. Semicond. Process. 2 321
[25] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[26] Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451
Kashiwaya S, Tanaka Y, Koyanagi M and Kajimura K 1996 Phys. Rev. B 53 2667
[27] Daghero D and Gonnelli R S 2010 Supercond. Sci. Technol. 23 043001
[28] Wilson M N, Hallas A M, Cai Y, Guo S, Gong Z, Sankar R, Chou F C, Uemura Y J and Luke G M 2017 Phys. Rev. B 95 224506
[29] Guan S Y, Chen P J, Chu M W, Sankar R, Chou F, Jeng H T, Chang C S and Chuang T M 2016 Sci. Adv. 2 e1600894
[30] Pang G M, Smidman M, Zhao L X, Wang Y F, Weng Z F, Che L Q, Chen Y, Lu X, Chen G F and Yuan H Q 2016 Phys. Rev. B 93 060506(R)
Related articles from Frontiers Journals
[1] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 097403
[2] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 097403
[3] Lai-Lai Li, Yue-Lei Zhao, Xi-Xiang Zhang, Young Sun. Possible Evidence for Spin-Transfer Torque Induced by Spin-Triplet Supercurrents[J]. Chin. Phys. Lett., 2018, 35(7): 097403
[4] Ai-Min Li, Lu-Dong, Xin-Yi Yang, Zhen Zhu, Guan-Yong Wang, Dan-Dan Guan, Hao Zheng, Yao-Yi Li, Canhua Liu, Dong Qian, Jin-Feng Jia. Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)[J]. Chin. Phys. Lett., 2018, 35(6): 097403
[5] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 097403
[6] Lu-Bing Shao, Zi-Dan Wang, Rui Shen, Li Sheng, Bo-Gen Wang, Ding-Yu Xing. Controlling Fusion of Majorana Fermions in One-Dimensional Systems by Zeeman Field[J]. Chin. Phys. Lett., 2017, 34(6): 097403
[7] Bin-He Wu, Xu-Yu Feng, Chao Wang, Xiao-Feng Xu, Chun-Rui Wang. Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions$^{*}$[J]. Chin. Phys. Lett., 2016, 33(01): 097403
[8] WU Bin-He, CHENG Xiao, WANG Chun-Rui, GONG Wei-Jiang. Probing Majorana Bound States in T-Shaped Junctions[J]. Chin. Phys. Lett., 2014, 31(03): 097403
[9] PENG Lin, CAI Chuan-Bing, LIU Yong-Sheng. Observation of Dynamic Behavior in YBa2Cu3O7−δ/La0.88Ca0.12MnO3 Using Femtosecond Optical Pulses[J]. Chin. Phys. Lett., 2014, 31(2): 097403
[10] LI Xiao-Wei . Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions[J]. Chin. Phys. Lett., 2011, 28(4): 097403
[11] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 097403
[12] HUANG Yan, WANG Yong-Lei, SHAN Lei, JIA Ying, YANG Huan, WEN Hai-Hu, ZHUANG Cheng-Gang, LI Qi, CUI Yi, XI Xiao-Xing,. Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(6): 097403
[13] JI Yi-Qun, NIU Zhi-Ping, FENG Cui-Di, XING Ding-Yu. Spin-Triplet Andreev Reflection in Ferromagnet/Ferromangnet/s-Wave Superconductor Junctions[J]. Chin. Phys. Lett., 2008, 25(2): 097403
[14] QIN Zhi-Jie, HU Dong-Sheng, XIONG Shi-Jie. Effects of Induced Flux on Andreev Levels in a Quantum Point Contact Embedded in Superconducting Ring[J]. Chin. Phys. Lett., 2004, 21(5): 097403
Viewed
Full text


Abstract