Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 090302    DOI: 10.1088/0256-307X/37/9/090302
Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays
Xin-Wei Zha , Min-Rui Wang*, and Ruo-Xu Jiang 
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Cite this article:   
Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang  2020 Chin. Phys. Lett. 37 090302
Download: PDF(410KB)   PDF(mobile)(406KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Huber et al. [Phys. Rev. Lett. 118 (2017) 200502] have proved that a seven-qubit state whose three-body marginal states are all maximally mixed does not exist. Here, we propose a method to build a maximally entangled state based on orthogonal arrays to construct maximally entangled seven-qubit states. Using this method, we not only determine that a seven-qubit state whose three-body marginals are all maximally mixed does not exist, but also find the condition for maximally entangled seven-qubit states. We consider that $\pi_{\rm ME} =19/140$ is a condition for maximally entangled seven-qubit states. Furthermore, we derive three forms of maximally entangled seven-qubit states via orthogonal arrays.
Received: 15 March 2020      Published: 01 September 2020
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Xin-Wei Zha 
Min-Rui Wang
and Ruo-Xu Jiang 
[1]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Benatti F, Liguori A M and Paluzzano G 2010 J. Phys. A 43 045304
[4] Facchi P, Marzolino U, Parisi G, Pascazio S and Scardicchio A 2008 Phys. Rev. Lett. 101 050502
[5] Higuchi A and Sudbery A 2000 Phys. Lett. A 273 213
[6] Gisin N and Bechmann-Pasquinucci H 1998 Phys. Lett. A 246 1
[7] Verstraete F, Audenaert K and De Moor B 2001 Phys. Rev. A 64 012316
[8] Acín A, Gill R and Gisin N 2005 Phys. Rev. Lett. 95 210402
[9] Ishizaka S and Hiroshima T 2000 Phys. Rev. A 62 022310
[10] Yu N K, Duan R Y and Ying M S 2012 Phys. Rev. Lett. 109 020506
[11] De Vicente J I, Spee C and Kraus B 2013 Phys. Rev. Lett. 111 110502
[12] Martin J, Giraud O, Braun P A et al. 2010 Phys. Rev. A 81 062347
[13] Facchi P, Florio G, Parisi G and Pascazio S 2008 Phys. Rev. A 77 060304
[14] Zha X W, Yuan C Z and Zhang Y P 2013 Laser Phys. Lett. 10 045201
[15] Goyeneche D and Życzkowski K 2014 Phys. Rev. A 90 022316
[16] Arnaud L and Cerf N J 2013 Phys. Rev. A 87 012319
[17] Gour G and Wallach N R 2010 J. Math. Phys. 51 112201
[18] Huber F, Gühne O and Siewert J 2017 Phys. Rev. Lett. 118 200502
[19] Giraud O 2007 J. Phys. A 40 F1053
[20] Zha X W, Ahmed I, Zhang D and Zhang Y P 2020 Laser Phys. Lett. 17 035201
[21] Zha X W, Song H Y, Qi J X et al. 2012 J. Phys. A 45 255302
[22] Yu X Y, Zha X W and Che J L 2018 Sci. Sin.-Phys. Mech. Astron. 48 020301 (in Chinese)
Related articles from Frontiers Journals
[1] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 090302
[2] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 090302
[3] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 090302
[4] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 090302
[5] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 090302
[6] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 090302
[7] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 090302
[8] P.-Y. Hou, L. He, F. Wang, X.-Z. Huang, W.-G. Zhang, X.-L. Ouyang, X. Wang, W.-Q. Lian, X.-Y. Chang, L.-M. Duan. Experimental Hamiltonian Learning of an 11-Qubit Solid-State Quantum Spin Register[J]. Chin. Phys. Lett., 2019, 36(10): 090302
[9] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 090302
[10] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 090302
[11] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 090302
[12] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 090302
[13] Li Chen, Dong Yan, Li-Jun Song, Shou Zhang. Dynamics of Quantum Fisher Information in Homodyne-Mediated Feedback Control[J]. Chin. Phys. Lett., 2019, 36(3): 090302
[14] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 090302
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 090302
Full text