Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 088701    DOI: 10.1088/0256-307X/37/8/088701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Polymorphism and Flexibility of DNA in Alcohols
Nan Zhang1,2, Ming-Ru Li1,2, Hui-Ting Xu1,2, and Feng-Shou Zhang1,2,3*
1The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2China Beijing Radiation Center, Beijing 100875, China
3Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
Cite this article:   
Nan Zhang, Ming-Ru Li, Hui-Ting Xu et al  2020 Chin. Phys. Lett. 37 088701
Download: PDF(940KB)   PDF(mobile)(931KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecular dynamics simulations are performed to investigate the polymorphism and flexibility of DNA in water, ethylene glycol (EG) and ethanol (EA) solutions. DNA in EG resembles the structure of DNA in water exhibiting B-DNA. In contrast, the DNA is an A-DNA state in the EA. We demonstrate that one important cause of these A$\leftrightarrow$B state changes is the competition between hydration and direct cation coupling to the phosphate groups on DNA backbones. To DNA structural polymorphism, it is caused by competition between hydration and cation coupling to the base pairs on grooves. Unlike flexible DNA in water and EA, DNA is immobilized around the canonical structure in EG solution, eliminating the potential biological effects of less common non-canonical DNA sub-states.
Received: 19 April 2020      Published: 28 July 2020
PACS:  87.10.Tf (Molecular dynamics simulation)  
  87.14.gk (DNA)  
  87.15.B- (Structure of biomolecules)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Supported by the National Natural Science Foundation of China (Grants Nos. 11635003, 11025524 and 11161130520), the National Basic Research Program of China (Grant No. 2010CB832903), and the European Commission's 7th Framework Programme (Fp7-PEOPLE-2010-IRSES) (Grant No. 269131).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/088701       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/088701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nan Zhang
Ming-Ru Li
Hui-Ting Xu
and Feng-Shou Zhang
[1] Bixon M and Lifson S 1967 Tetrahedron 23 769
[2] Dickerson R E and Chiu T K 1997 Biopolymers 44 361
[3] Locasale J W, Napoli A A, Chen S, Berman H M and Lawson C L 2009 J. Mol. Biol. 386 1054
[4] Frederick C A, Williams L D, Ughetto G, Van der Marel G A, Van Boom J H, Rich A and Wang A H J 1990 Biochemistry 29 2538
[5] Paillard G and Lavery R 2004 Structure 12 113
[6] Rohs R, West S M, Sosinsky A, Liu P, Mann R S and Honig B 2009 Nature 461 1248
[7] Rothemund P W K 2006 Nature 440 297
[8] Gu B, Zhang F S, Wang Z P and Zhou H Y 2008 J. Chem. Phys. 129 184505
[9] Shen X, Ding K K and Zhang F S 2013 Chem. Phys. Lett. 574 100
[10] Wen J, Shen H, Zhai Y R and Zhang F S 2016 Physica A 450 515
[11] Pérez A, Marchan I, Svozil D, Sponer J, Cheatham Lii T E, Laughton C A and Orozco M 2007 Biophys. J. 92 3817
[12] Pérez A, Luque F J and Orozco M 2007 J. Am. Chem. Soc. 129 14739
[13] Dans P D, Danilāne L, Ivani I, Dršata T, Lankaš F, Hospital A, Walther J, Pujagut R I, Battistini F, Gelpí J L, Lavery R and Orozco M 2016 Nucl. Acids Res. 44 4052
[14] Ivani I, Dans P D, Noy A, Pérez A, Faustino I, Hospital A, Walther J, Andrio P, Goni R, Balaceanu A, Portella G, Battistini F, Gelpí J L, González C, Vendruscolo M, Laughton C A, Harris S A, Case D A and Orozco M 2016 Nat. Methods 13 55
[15] Lavery R, Zakrzewska K, Beveridge D, Bishop T C, Case D A, Cheatham Lii T , Dixit S, Jayaram B, Lankas F, Laughton C, Maddocks J H, Michon A, Osman R, Orozco M, Perez A, Singh T, Spackova N and Sponer J 2010 Nucl. Acids Res. 38 299
[16] Dans P D, Faustino I, Battistini F, Zakrzewska K, Lavery R and Orozco M 2014 Nucl. Acids Res. 42 11304
[17] Pasi M, Maddocks J H, Beveridge D, Bishop T C, Case D A, Cheatham Lii T , Dans P D, Jayaram B, Lankas F, Laughton C, Mitchell J, Osman R, Orozco M, Pérez A, Petkevičiūtė D, Spackova N, Sponer J, Zakrzewska K and Lavery R 2014 Nucl. Acids Res. 42 12272
[18] Lavery R, Maddocks J H, Pasi M and Zakrzewska K 2014 Nucl. Acids Res. 42 8138
[19] Pasi M, Maddocks J H and Lavery R 2015 Nucl. Acids Res. 43 2412
[20] Gu B, Zhang F S, Wang Z P and Zhou H Y 2008 Phys. Rev. Lett. 100 088104
[21] Shen X, Gu B, Che S A and Zhang F S 2011 J. Chem. Phys. 135 34509
[22] Shen X, Atamas N A and Zhang F S 2012 Phys. Rev. E 85 051913
[23] Li M R, Zhang N and Zhang F S 2018 Chin. Phys. B 27 083103
[24] Li M R, Zhang N and Zhang F S 2018 J. Mol. Liq. 271 175
[25] Ball P 2005 Nature 436 1084
[26] Errington J R and Debenedetti P G 2001 Nature 409 318
[27] Lindahl T 2016 Nat. Rev. Mol. Cell Biol. 17 335
[28] Eliasson R, Hammarsten E and Lindahl T 1962 Biotechnol. Bioeng. 4 53
[29] Anagnostopoulos C and Spizizen J 1961 J. Bacteriol. 81 741
[30] Zhang N, Li M R and Zhang F S 2019 Chem. Phys. Lett. 718 12
[31] Hess B, Kutzner C, Van Der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[32] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[33]Allen M P and Tildesley D J 1989 Computer Simulation of Liquids (Oxford: Oxford University Press)
[34] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
[35]Saenger W 1984 Principles of Nucleic Acid Structure (New York: Springer-Verlag)
[36] Jayaram B, Sprous D, Young M A and Beveridge D L 1998 J. Am. Chem. Soc. 120 10629
[37] Saenger W, Hunter W N and Kennard O 1986 Nature 324 385
[38] McConnell K J and Beveridge D L 2000 J. Mol. Biol. 304 803
[39] Perez A, Luque F J and Orozco M 2012 Acc. Chem. Res. 45 196
Related articles from Frontiers Journals
[1] Dang-Xin Mao, Xiao-Gang Wang, Guo-Quan Zhou, Song-Wei Zeng, Liang Chen, Jun-Lang Chen, Chao-Qing Dai. Manipulating the Flipping of Water Dipoles in Carbon Nanotubes[J]. Chin. Phys. Lett., 2019, 36(10): 088701
[2] Yi-Zhao Geng, Hui Zhang, Gang Lyu, Qing Ji. Initiation Mechanism of Kinesin's Neck Linker Docking Process[J]. Chin. Phys. Lett., 2017, 34(2): 088701
[3] LI Zong-Chao, DUAN Li-Li, FENG Guo-Qiang, ZHANG Qing-Gang. All-Atom Direct Folding Simulation for Proteins Using the Accelerated Molecular Dynamics in Implicit Solvent Model[J]. Chin. Phys. Lett., 2015, 32(11): 088701
[4] YU Tao, GUO Xu, ZOU Xian-Wu, SANG Jian-Ping. Ion Binding Energies Determining Functional Transport of ClC Proteins[J]. Chin. Phys. Lett., 2014, 31(06): 088701
[5] GENG Yi-Zhao, ZHANG Hui, JI Qing, YAN Shi-Wei. Locking Function of a Key Residue in Kinesin's Gating Mechanism[J]. Chin. Phys. Lett., 2014, 31(04): 088701
[6] QI Wen-Peng, LEI Xiao-Ling** . DNA Conformational Variations Induced by Stretching 3'5'-Termini Studied by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2011, 28(4): 088701
[7] Shu-Xia Liu, Shi-Wei Yan. Mechanism of Competition between Nutlin3 and p53 for Binding with Mdm2[J]. Chin. Phys. Lett., 2017, 34(11): 088701
Viewed
Full text


Abstract