Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087402    DOI: 10.1088/0256-307X/37/8/087402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$
Qiang Gao1,2, Lin Zhao1*, Cheng Hu1,2, Hongtao Yan1,2, Hao Chen1,2, Yongqing Cai1,2, Cong Li1,2, Ping Ai1,2, Jing Liu1,2,3, Jianwei Huang1,2, Hongtao Rong1,2, Chunyao Song1,2, Chaohui Yin1,2, Qingyan Wang1, Yuan Huang1, Guo-Dong Liu1,2,4, Zu-Yan Xu5, and Xing-Jiang Zhou1,2,3,4*
1National Lab for Superconductivity, Beijing National laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Qiang Gao, Lin Zhao, Cheng Hu et al  2020 Chin. Phys. Lett. 37 087402
Download: PDF(3827KB)   PDF(mobile)(3805KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High temperature superconductivity in cuprates is realized by doping the Mott insulator with charge carriers. A central issue is how such an insulating state can evolve into a conducting or superconducting state when charge carriers are introduced. Here, by in situ vacuum annealing and Rb deposition on the Bi$_2$Sr$_2$Ca$_{0.6}$Dy$_{0.4}$Cu$_2$O$_{8+\delta}$ (Bi2212) sample surface to push its doping level continuously from deeply underdoped ($T_{\rm c}=25$ K, doping level $p\sim0.066$) to the near-zero doping parent Mott insulator, angle-resolved photoemission spectroscopy measurements are carried out to observe the detailed electronic structure evolution in the lightly hole-doped region for the first time. Our results indicate that the chemical potential lies at about l eV above the charge transfer band for the parent state at zero doping, which is quite close to the upper Hubbard band. With increasing hole doping, the chemical potential moves continuously towards the charge transfer band and the band structure evolution exhibits a rigid band shift-like behavior. When the chemical potential approaches the charge transfer band at a doping level of $\sim$0.05, the nodal spectral weight near the Fermi level increases, followed by the emergence of the coherent quasiparticle peak and the insulator–superconductor transition. Our observations provide key insights in understanding the insulator–superconductor transition in doping the parent cuprate compound and for establishing related theories.
Received: 22 May 2020      Published: 28 July 2020
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  74.72.Cj (Insulating parent compounds)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11888101, 11922414, and 11534007), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300300 and 2017YFA0302900), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000), the Youth Innovation Promotion Association of CAS (Grant No. 2017013), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G06).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087402       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang Gao
Lin Zhao
Cheng Hu
Hongtao Yan
Hao Chen
Yongqing Cai
Cong Li
Ping Ai
Jing Liu
Jianwei Huang
Hongtao Rong
Chunyao Song
Chaohui Yin
Qingyan Wang
Yuan Huang
Guo-Dong Liu
Zu-Yan Xu
and Xing-Jiang Zhou
[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Zaanen J, Sawatzky G A and Allen J W 1985 Phys. Rev. Lett. 55 418
[3] Mattheiss L F 1987 Phys. Rev. Lett. 58 1028
[4] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[5] Fink J, Nuecker N, Romberg H A and Fuggle J C 1989 IBM J. Res. Dev. 33 372
[6] Armitage N P et al. 2002 Phys. Rev. Lett. 88 257001
[7] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[8] Ino A et al. 2000 Phys. Rev. B 62 4137
[9] Yoshida T et al. 2003 Phys. Rev. Lett. 91 027001
[10] Ino A et al. 1997 Phys. Rev. Lett. 79 2101
[11] Yoshida T et al. 2006 Phys. Rev. B 74 224510
[12] Ronning F et al. 2003 Phys. Rev. B 67 165101
[13] Shen K M et al. 2004 Phys. Rev. Lett. 93 267002
[14] Hashimoto M et al. 2008 Phys. Rev. B 77 094516
[15] Tanaka K et al. 2010 Phys. Rev. B 81 125115
[16] Liu G D et al. 2008 Rev. Sci. Instrum. 79 023105
[17] Zhou X J et al. 2018 Rep. Prog. Phys. 81 062101
[18] Zhang Y X et al. 2016 Sci. Bull. 61 1037
[19] Fretwell H M et al. 2000 Phys. Rev. Lett. 84 4449
[20] Tanaka K et al. 2006 Science 314 1910
[21] Peng Y Y et al. 2013 Nat. Commun. 4 2459
[22] Segawa K and Ando Y 2006 Phys. Rev. B 74 100508
[23] Zhong Y et al. 2019 arXiv:1904.12280 [cond-mat.supr-con]
[24] Armitage N P, Fournier P and Greene R L 2010 Rev. Mod. Phys. 82 2421
[25] Matsumoto H, Sasaki M and Tachiki M 1989 Solid State Commun. 71 829
[26] Allen J W et al. 1990 Phys. Rev. Lett. 64 595
[27] Meinders M B J, Eskes H and Sawatzky G A 1993 Phys. Rev. B 48 3916
[28] Veenendaal M A V, Sawatzky G A and Groen W A 1994 Phys. Rev. B 49 1407
[29] Ikeda M et al. 2010 Phys. Rev. B 82 020503
[30] Hu C et al. 2018 Chin. Phys. Lett. 35 067403
[31] Ruan W et al. 2016 Sci. Bull. 61 1826
Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 087402
[2] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 087402
[3] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 087402
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 087402
[5] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 087402
[6] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 087402
[7] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 087402
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 087402
[9] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 087402
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 087402
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 087402
[12] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 087402
[13] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 087402
[14] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 087402
[15] Ying Ding, Lin Zhao, Hong-Tao Yan, Qiang Gao, Jing Liu, Cheng Hu, Jian-Wei Huang, Cong Li, Yu Xu, Yong-Qing Cai, Hong-Tao Rong, Ding-Song Wu, Chun-Yao Song, Hua-Xue Zhou, Xiao-Li Dong, Guo-Dong Liu, Qing-Yan Wang, Shen-Jin Zhang, Zhi-Min Wang, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Chuang-Tian Chen, X. J. Zhou. Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(1): 087402
Viewed
Full text


Abstract