Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087104    DOI: 10.1088/0256-307X/37/8/087104
Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor
Wenke He , Bingchao Qin , and Li-Dong Zhao*
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Cite this article:   
Wenke He , Bingchao Qin , and Li-Dong Zhao 2020 Chin. Phys. Lett. 37 087104
Download: PDF(774KB)   PDF(mobile)(772KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The figure of merit $ZT$ is the direct embodiment of thermoelectric performance for a given material. However, as an indicator of performance improvement, the only $ZT$ value is not good enough to identify its outstanding inherent properties, which are highly sought in thermoelectric community. Here, we utilize one powerful parameter to reveal the outstanding properties of a given material. The weighted mobility is used to estimate the carrier transports of p-type SnS crystals, including the differences in doping level, carrier scattering and electronic band structure. We analyze the difference in carrier scattering mechanism for different crystal forms with the same doping level, then evaluate and confirm the temperature-dependent evolution of electronic band structures in SnS. Finally, we calculate the quality factor $B$ based on the weighted mobility, and establish the relationship between $ZT$ and $B$ to further predict the potential performance in p-type SnS crystals with low cost and earth abundance, which can be realized through taking advantage of the inherent material property, thus improving $B$ factor to achieve optimal thermoelectric level.
Received: 24 June 2020      Published: 12 July 2020
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2018YFB0703600), the National Natural Science Foundation of China (Grant Nos. 51632005 and 51772012), the Beijing Natural Science Foundation (Grant No. JQ18004), the Shenzhen Peacock Plan Team (Grant No. KQTD2016022619565991), 111 Project (Grant No. B17002), and the National Science Fund for Distinguished Young Scholars (Grant No. 51925101).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Wenke He 
Bingchao Qin 
and Li-Dong Zhao
[1] He J and Tritt T M 2017 Science 357 eaak9997
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Zhang X and Zhao L D 2015 J. Materiomics 1 92
[4] Qin B C, Xiao Y, Zhou Y M and Zhao L D 2018 Rare Met. 37 343
[5] Gao L, Liu Q L, Yang J W, Wu Y, Liu Z H, Qin S J, Ye X B, Jin S F, Li G D, Zhao H Z and Long Y W 2020 Chin. Phys. Lett. 37 066202
[6] Zhou K, Zhang T, Liu B and Yao Y J 2020 Chin. Phys. Lett. 37 017102
[7] Wei T R, Wu C F, Li F and Li J F 2018 J. Materiomics 4 304
[8] Xiao Y and Zhao L D 2020 Science 367 1196
[9] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[10] Zhou Y and Zhao L D 2017 Adv. Mater. 29 1702676
[11] Shang P P, Dong J, Pei J, Sun F H, Pan Y, Tang H, Zhang B P, Zhao L D and Li J F 2019 Research 2019 1
[12] Zhou L Y, Zheng Q, Bao L H and Liang W J 2020 Chin. Phys. Lett. 37 017301
[13] Tan Q and Li J F 2014 J. Electron. Mater. 43 2435
[14] Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B and Kanatzidis M G 2014 J. Mater. Chem. A 2 17302
[15] Chattopadhyay T, Pannetier J and Von Schnering H G 1986 J. Phys. Chem. Solids 47 879
[16] Shafique A and Shin Y H 2017 Sci. Rep. 7 10
[17] He W, Wang D, Dong J F, Qiu Y, Fu L, Feng Y, Hao Y J, Wang G T, Wang J F, Liu C, Li J F, He J Q and Zhao L D 2018 J. Mater. Chem. A 6 10048
[18] Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy & Environ. Sci. 9 3044
[19] Qu W W, Zhang X X, Yuan B F and Zhao L D 2018 Rare Met. 37 79
[20] Chang C and Zhao L D 2018 Mater. Today Phys. 4 50
[21] Feng B, Li G Q, Hu X M, Liu P H, Li R S, Zhang Y L, Li Y W, He Z and Fan X A 2020 Chin. Phys. Lett. 37 037201
[22] Volykhov A A, Shtanov V I and Yashina L V 2008 Inorg. Mater. 44 345
[23] Parker D and Singh D J 2010 J. Appl. Phys. 108 083712
[24] Hao S, Dravid V P, Kanatzidis M G and Wolverton C 2016 APL Mater. 4 104505
[25] Wu H, Lu X, Wang G, Peng K, Chi H, Zhang B, Chen Y, Li C, Yan Y, Guo L, Uher C, Zhou X and Han X 2018 Adv. Energy Mater. 8 1800087
[26] Zhou B, Li S, Li W, Li J, Zhang X, Lin S, Chen Z and Pei Y 2017 ACS Appl. Mater. & Interfaces 9 34033
[27] Tang H, Dong J F, Sun F H, Asfandiyar, Shang P and Li J F 2019 Sci. Chin. Mater. 62 7
[28] Wang Z, Wang D, Qiu Y, He J and Zhao L D 2019 J. Alloys Compd. 789 485
[29] Yang H Q, Wang X Y, Wu H, Zhang B, Xie D D, Chen Y J, Lu X, Han X D, Miao L and Zhou X Y 2019 J. Mater. Chem. C 7 3351
[30] He W, Wang D, Wu H et al. 2019 Science 365 1418
[31] Snyder G J, Snyder A H, Wood M, Gurunathan R, Snyder B H and Niu C 2020 Adv. Mater. 32 2001537
[32] Imasato K, Fu C, Pan Y, Wood M, Kuo J J, Felser C and Snyder G J 2020 Adv. Mater. 32 1908218
[33] Slade T J, Grovogui J A, Kuo J J, Anand S, Bailey T P, Wood M, Uher C, Snyder G J, Dravid V P and Kanatzidis M G 2020 Energy & Environ. Sci. 13 1509
[34] Qin B, He W and Zhao L D 2020 J. Materiomics DOI:10.1016/j.jmat.2020.06.003
[35] May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205
[36] Xie H H, Wang H, Fu C, Liu Y, Snyder G J, Zhao X and Zhu T 2015 Sci. Rep. 4 6888
[37] Mao J, Shuai J, Song S et al. 2017 Proc. Natl. Acad. Sci. USA 114 10548
[38]May A F and Snyder G J 2017 Materials, Preparation, and Characterization in Thermoelectrics (CRC press) p. 11
[39] Kang S D and Snyder G J 2017 arXiv:1710.06896 [cond-mat.mtrl-sci]
[40] Kang S D and Snyder G J 2017 Nat. Mater. 16 252
Related articles from Frontiers Journals
[1] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 087104
[2] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 087104
[3] Hang Liu, Jia-Tao Sun, Chenchen Song, Huaqing Huang, Feng Liu, Sheng Meng. Fermionic Analogue of High Temperature Hawking Radiation in Black Phosphorus[J]. Chin. Phys. Lett., 2020, 37(6): 087104
[4] Chao Wang, Yun-Xian Liu, Xin Chen, Pin Lv, Hai-Rui Sun, Xiao-Bing Liu. Stable Compositions, Structures and Electronic Properties in K–Ga Systems Under Pressure[J]. Chin. Phys. Lett., 2020, 37(2): 087104
[5] Hong-Yu Yu, Nan Gao, Hong-Dong Li, Xu-Ri Huang, Tian Cui. Comparative Study of Substitutional N and Substitutional P in Diamond[J]. Chin. Phys. Lett., 2019, 36(11): 087104
[6] Xuan Wen, Ke Yang, Hua Wu. Contrasting Magnetism in Isovalent Layered LaSr$_{3}$NiRuO$_{4}$H$_{4}$ and LaSrNiRuO$_{4}$ due to Distinct Spin-Orbital States[J]. Chin. Phys. Lett., 2019, 36(7): 087104
[7] Lin Feng, Xue-Ying Zhang. First-Principles Investigation on the Fully Compensated Ferrimagnetic Behavior in Ti$_{2}$NbSb and TiZrNbSb[J]. Chin. Phys. Lett., 2019, 36(6): 087104
[8] Baoan Liu, Suye Yu, Xiangcao Li, Xin Ju. Electronic Structure and Optical Property Calculation of an Oxygen Vacancy in NH$_{4}$H$_{2}$PO$_{4}$ Crystals[J]. Chin. Phys. Lett., 2019, 36(3): 087104
[9] Dawei Zhou, Yangbing Zheng, Chunying Pu, Zhuo Wang, Xin Tang. Computational Prediction to Two-Dimensional SnAs[J]. Chin. Phys. Lett., 2018, 35(10): 087104
[10] Cheng Hu, Jian-Fa Zhao, Ying Ding, Jing Liu, Qiang Gao, Lin Zhao, Guo-Dong Liu, Li Yu, Chang-Qing Jin, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca$_2$CuO$_2$Cl$_2$[J]. Chin. Phys. Lett., 2018, 35(6): 087104
[11] Li-Yuan Rong, Xun Shi, Pierre Richard, Yun-Lei Sun, Guang-Han Cao, Xiang-Zhi Zhang, Jun-Zhang Ma, Ming Shi, Yao-Bo Huang, Tian Qian, Hong Ding, Ren-Zhong Tai. Coexistence of Polaronic States and Superconductivity in Iron-Pnictide Compound Ba$_{2}$Ti$_{2}$Fe$_{2}$As$_{4}$O[J]. Chin. Phys. Lett., 2018, 35(5): 087104
[12] Li-Wei Jiang, Ya-Xiang Lu, Yue-Sheng Wang, Li-Lu Liu, Xing-Guo Qi, Cheng-Long Zhao, Li-Quan Chen, Yong-Sheng Hu. A High-Temperature $\beta$-Phase NaMnO$_{2}$ Stabilized by Cu Doping and Its Na Storage Properties[J]. Chin. Phys. Lett., 2018, 35(4): 087104
[13] Ning-Ning Zu, Rui Li, Ya-Hui Zheng, Lin Chen. First-Principles Calculation for the Half Metallic Properties of La$_{2}$NbMnO$_{6}$[J]. Chin. Phys. Lett., 2017, 34(10): 087104
[14] Chen-Lu Wang, Yan Zhang, Jian-Wei Huang, Guo-Dong Liu, Ai-Ji Liang, Yu-Xiao Zhang, Bing Shen, Jing Liu, Cheng Hu, Ying Ding, De-Fa Liu, Yong Hu, Shao-Long He, Lin Zhao, Li Yu, Jin Hu, Jiang Wei, Zhi-Qiang Mao, You-Guo Shi, Xiao-Wen Jia, Feng-Feng Zhang, Shen-Jin Zhang, Feng Yang, Zhi-Min Wang, Qin-Jun Peng, Zu-Yan Xu , Chuang-Tian Chen, Xing-Jiang Zhou. Evidence of Electron-Hole Imbalance in WTe$_2$ from High-Resolution Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(9): 087104
[15] Abdelkader Khouidmi, Hadj Baltache, Ali Zaoui. Magnetic and Electronic Properties of Double Perovskite Ba$_{2}$SmNbO$_{6 }$ without Octahedral Tilting by First Principle Calculations[J]. Chin. Phys. Lett., 2017, 34(7): 087104
Full text