Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 084203    DOI: 10.1088/0256-307X/37/8/084203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Photon Coalescence in a Lossy Non-Hermitian Beam Splitter
Zhiqiang Ren , Rong Wen , and J. F. Chen*
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
Cite this article:   
Zhiqiang Ren , Rong Wen , and J. F. Chen 2020 Chin. Phys. Lett. 37 084203
Download: PDF(530KB)   PDF(mobile)(525KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate photon coalescence in a lossy non-Hermitian system and study a dynamic device modeled by a beam splitter with an extra intrinsic phase term added in the transformation matrix, with which the device is a lossy non-Hermitian linear system. The two-photon interference behavior is altered accordingly since this extra intrinsic phase affects the unitary of transformation and the coalescence of the incoming photons. We calculate the coincidence between two single-photon pulses, considering the interferometric phase between two pulses and the extra intrinsic phase as the tunable parameters. The extra phase turns the famous Hong–Ou–Mandel dip into a bump, with the visibility dependent on both the interferometric phase and the extra phase.
Received: 17 April 2020      Published: 28 July 2020
PACS:  42.50.Ar  
  42.25.Hz (Interference)  
  42.50.-p (Quantum optics)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11674100 and 11654005), the Natural Science Foundation of Shanghai (Grant No. 16ZR1448200), and the Shanghai Rising-Star Program (Grant No. 17QA1401300).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/084203       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/084203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiqiang Ren 
Rong Wen 
and J. F. Chen
[1]Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) p 131
[2] Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
[3] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[4] Ou Z Y and Mandel L 1988 Phys. Rev. Lett. 61 54
[5] Ou Z Y, Gage E C, Magill B E and Mandel L 1989 J. Opt. Soc. Am. B 6 100
[6] Bylander J, Robert-Philip I and Abram I 2003 Eur. Phys. J. D 22 295
[7] Liu J, Zhou Y, Wang W, Liu R F, He K, Li F L and Xu Z 2013 Opt. Express 21 019209
[8] Toyoda K, Hiji R, Noguchi A and Urabe S 2015 Nature 527 74
[9] Fakonas J S, Lee H, Kelaita Y A and Atwater H A 2014 Nat. Photon. 8 317
[10] Heeres R W, Kouwenhoven L P and Zwiller V 2013 Nat. Nanotechnol. 8 719
[11] Beugnon J, Jones M P A, Dingjan J, Darquié B, Messin G, Browaeys A and Grangier P 2006 Nature 440 779
[12] Qian P, Gu Z, Cao R, Wen R, Ou Z Y, Chen J F and Zhang W 2016 Phys. Rev. Lett. 117 013602
[13] Zhai Y H, Chen X H, Zhang D and Wu L A 2005 Phys. Rev. A 72 043805
[14] Kim J H, Cai T, Richardson C J K, Leavitt R P and Waks E 2016 Optica 3 000577
[15] Agne S, Kauten T, Jin J and Meyer-Scott E 2017 Phys. Rev. Lett. 118 153602
[16] Giesz V, Portalupi S L, Grange T, Antón C, Santis L D, Demory J, Somaschi N, Sagnes I, Lemaitre A, Lanco L, Auffèves A and Senellart P 2015 Phys. Rev. B 92 161302
[17] Bernien H, Childress L, Robledo L, Markham M, Twitchen D and Hanson R 2012 Phys. Rev. Lett. 108 043604
[18] Steinberg A M, Kwiat P G and Chiao R Y 1993 Phys. Rev. Lett. 71 708
[19] Zhou Y, Liu J B, Zheng H B et al. 2019 Chin. Phys. B 28 104205
[20] Liu J B, Wei D, Chen H et al. 2016 Chin. Phys. B 25 034203
[21] Jeffers J 2000 J. Mod. Opt. 47 1819
[22] Roger T, Restuccia S, Lyons A, Giovannini D, Romero J, Jeffers J, Padgett M and Faccio D 2016 Phys. Rev. Lett. 117 013601
[23] Wen R, Zou C L, Zhu X, Chen P, Ou Z Y, Chen J F and Zhang W 2019 Phys. Rev. Lett. 122 253602
[24] Barnett S M, Jeffers J, Gatti A and Loudon R 1998 Phys. Rev. A 57 2134
[25] Vest B, Dheur M C, É Devaux, Baron A, Rousseau E, Hugonin J P, Greffet J J, Messin G and Marquier F 2017 Science 356 1373
[26] Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901
[27] Jin L, Zhang X Z, Zhang G and Song Z 2016 Sci. Rep. 6 20976
[28] Graefe E M 2019 Nat. Photon. 13 822
[29] Klauck F, Teuber L, Ornigotti M, Heinrich M, Scheel S and Szameit A 2019 Nat. Photon. 13 883
[30]Loudon R 2000 The Quantum Theory of Light (Oxford: Oxford University Press) p 89
Related articles from Frontiers Journals
[1] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 084203
[2] WU Xue-Fei, DOU Xiu-Ming, DING Kun, ZHOU Peng-Yu, NI Hai-Qiao, NIU Zhi-Chuan, ZHU Hai-Jun, JIANG De-Sheng, ZHAO Cui-Lan, SUN Bao-Quan. Second-Order Correlation Function for Asymmetric-to-Symmetric Transitions due to Spectrally Indistinguishable Biexciton Cascade Emission[J]. Chin. Phys. Lett., 2015, 32(12): 084203
[3] HAN Bai-Ping, ZHENG Yu-Jun, HU Feng, FAN Qiu-Bo. Photon Statistical Properties of Single Terrylene Molecules in P-Terphenyl Crystals[J]. Chin. Phys. Lett., 2015, 32(06): 084203
[4] WEN Feng, ZHANG Xun, XUE Xin-Xin, SUN Jia, SONG Jian-Ping, ZHANG Yan-Peng. Fourth-Order Spatial Correlation of Thermal Light[J]. Chin. Phys. Lett., 2014, 31(11): 084203
[5] ZHANG Wei, DING Dong-Sheng, PAN Jian-Song, SHI Bao-Sen. Non-Classical Correlated Photon Pairs Generation via Cascade Transition of 5S1/2–5P3/2–5D5/2 in a Hot 85Rb Atomic Vapor[J]. Chin. Phys. Lett., 2014, 31(06): 084203
[6] ZHOU Tao, ZANG Xiao-Fei, XU Dan-Hua. Manipulating Single-Photon Transport Properties in an Asymmetrical Waveguide Coupled to a Whispering-Gallery Resonator Containing a Two-Level Atom[J]. Chin. Phys. Lett., 2014, 31(04): 084203
[7] WANG Chang-Chun, YUAN Hong-Chun, FAN Hong-Yi. Photon Counting for a Number State Passing through a Laser Channel[J]. Chin. Phys. Lett., 2012, 29(11): 084203
[8] LUO Kai-Hong, HUANG Bo-Qiang, ZHENG Wei-Mou, WU Ling-An. Nonlocal Imaging by Conditional Averaging of Random Reference Measurements[J]. Chin. Phys. Lett., 2012, 29(7): 084203
[9] ZHAO Sheng-Mei**, DING Jian, DONG Xiao-Liang, ZHENG Bao-Yu . Ghost Imaging Using Orbital Angular Momentum[J]. Chin. Phys. Lett., 2011, 28(12): 084203
[10] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 084203
[11] LV Fan, SUN Fang-Wen**, ZOU Chang-Ling, HAN Zheng-Fu, GUO Guang-Can . Measurement of Ultra-Short Single-Photon Pulse Duration with Two-Photon Interference[J]. Chin. Phys. Lett., 2011, 28(2): 084203
[12] KIM Nam-Chol, LI Jian-Bo, LIU Shao-Ding, CHENG Mu-Tian, HAO Zhong-Hua. Influence of Excitation Pulse Width on the Second-Order Correlation Functions of the Exciton-Biexciton Emissions[J]. Chin. Phys. Lett., 2010, 27(3): 084203
[13] CHEN Wei, HE Yan, GUO Hao. Quantum Correlation Coefficients for Angular Coherent States[J]. Chin. Phys. Lett., 2009, 26(10): 084203
[14] M. R. Setare, Sh. Barzanjeh. Interaction of a Two-Level Atom with the Morse Potential in the Framework of Jaynes-Cummings Model[J]. Chin. Phys. Lett., 2009, 26(9): 084203
[15] ZHANG Yi-Xin, CANG Ji. Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication[J]. Chin. Phys. Lett., 2009, 26(7): 084203
Viewed
Full text


Abstract