Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 080502    DOI: 10.1088/0256-307X/37/8/080502
GENERAL |
Negative Thermal Transport in Conduction and Advection
Liujun Xu* and Jiping Huang*
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
Cite this article:   
Liujun Xu and Jiping Huang 2020 Chin. Phys. Lett. 37 080502
Download: PDF(1064KB)   PDF(mobile)(1067KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Negative refractive index has drawn a great deal of attention due to its unique properties and practical applications in wave systems. To promote the related physics in thermotics, here we manage to coin a complex thermal conductivity whose imaginary part corresponds to the real part of complex refractive index. Therefore, the thermal counterpart of negative refractive index is just negative imaginary thermal conductivity, which is featured by the opposite directions of energy flow and wave vector in thermal conduction and advection, thus called negative thermal transport herein. To avoid violating causality, we design an open system with energy exchange and explore three different cases to reveal negative thermal transport. We further provide experimental suggestions with a solid ring structure. All finite-element simulations agree with theoretical analyses, indicating that negative thermal transport is physically feasible. These results have potential applications such as designing the inverse Doppler effect in thermal conduction and advection.
Received: 02 July 2020      Published: 18 July 2020
PACS:  05.70.-a (Thermodynamics)  
  44.10.+i (Heat conduction)  
  47.55.pb (Thermal convection)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11725521).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/080502       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/080502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liujun Xu and Jiping Huang
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[4] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[5] Smith D R and Kroll N 2000 Phys. Rev. Lett. 85 2933
[6] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[7] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[8] Lagarkov A N and Kissel V N 2004 Phys. Rev. Lett. 92 077401
[9] Grbic A and Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403
[10] Seddon N and Bearpark T 2003 Science 302 1537
[11] Luo C Y, Ibanescu M H, Johnson S G and Joannopoulos J D 2003 Science 299 368
[12] Ziolkowski R W 2003 Opt. Express 11 662
[13] Shendeleva M L 2002 Phys. Rev. B 65 134209
[14] Vemuri K P and Bandaru P R 2013 Appl. Phys. Lett. 103 133111
[15] Vemuri K P and Bandaru P R 2014 Appl. Phys. Lett. 104 083901
[16] Yang T Z, Vemuri K P and Bandaru P R 2014 Appl. Phys. Lett. 105 083908
[17] Vemuri K P, Canbazoglu F M and Bandaru P R 2014 Appl. Phys. Lett. 105 193904
[18] Kapadia R S and Bandaru P R 2014 Appl. Phys. Lett. 105 233903
[19] Hu R, Xie B, Hu J Y, Chen Q and Luo X B 2015 Europhys. Lett. 111 54003
[20] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J L, Alu A, Fan S H and Qiu C W 2019 Science 364 170
[21] Cao P C, Li Y, Peng Y G, Qiu C W and Zhu X F 2020 ES Energy & Environ. 7 48
[22] Torrent D, Poncelet O and Batsale J C 2018 Phys. Rev. Lett. 120 125501
[23] Guenneau S, Petiteau D, Zerrad M, Amra C and Puvirajesinghe T 2015 AIP Adv. 5 053404
[24] Dai G L, Shang J and Huang J P 2018 Phys. Rev. E 97 022129
[25] Yang F B, Xu L J and Huang J P 2019 ES Energy & Environ. 6 45
[26] Xu L J, Yang S, Dai G L and Huang J P 2020 ES Energy & Environ. 7 65
[27] Xu L J and Huang J P 2020 Sci. Chin.-Phys. Mech. Astron. 63 228711
[28] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[29] Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103
[30] Xu L J, Dai G L and Huang J P 2020 Phys. Rev. Appl. 13 024063
[31] Xu L J and Huang J P 2020 Int. J. Heat Mass Transfer 159 120133
[32] Hu R, Hu J Y, Wu R K, Xie B, Yu X J and Luo X B 2016 Chin. Phys. Lett. 33 044401
[33] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237
[34] Han T C, Yang P, Li Y, Lei D Y, Li B W, Hippalgaonkar K and Qiu C W 2018 Adv. Mater. 30 1804019
[35] Hu R, Huang S Y, Wang M, Luo X B, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849
[36] Liu Y D, Song J L, Zhao W X, Ren X C, Cheng Q, Luo X B, Fang N X L and Hu R 2020 Nanophotonics 9 855
[37] Peng Y G, Li Y, Cao P C, Zhu X F and Qiu C W 2020 Adv. Funct. Mater. 30 2002061
[38] Maldovan M 2013 Phys. Rev. Lett. 110 025902
[39] Xu L J, Yang S and Huang J P 2019 Phys. Rev. Appl. 11 034056
[40] Cai Z, Huang Y Z and Vincent W 2020 Chin. Phys. Lett. 37 050503
[41] Xu L J and Huang J P 2020 Appl. Phys. Lett. 117 011905
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 080502
[2] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 080502
[3] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 080502
[4] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 080502
[5] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 080502
[6] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 080502
[7] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 080502
[8] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 080502
[9] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 080502
[10] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 080502
[11] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 080502
[12] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 080502
[13] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 080502
[14] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 080502
[15] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 080502
Viewed
Full text


Abstract