Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 070301    DOI: 10.1088/0256-307X/37/7/070301
GENERAL |
Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States
Hongbin Liang1, Jiancheng Pei1, and Xiaoguang Wang1,2*
1Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
2Graduate School of China Academy of Engineering Physics, Beijing 100193, China
Cite this article:   
Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang 2020 Chin. Phys. Lett. 37 070301
Download: PDF(545KB)   PDF(mobile)(537KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To enhance the phase sensitivity of Mach–Zehnder interferometers, we use a tunable phase shift before the light beams are injected into the interferometer. The analytical result of the optimal phase shift is obtained, which only depends on the initial input states. For a non-zero optimal phase shift, the phase sensitivity of the interferometers in the output ports is always enhanced. We can achieve this enhancement for most states, including entangled and mixed states. The optimal phase shift is exhibited in three examples. Compared to previous methods, this scheme provides a general way to improve phase sensitivity and could find wide applications in optical phase estimations.
Received: 25 March 2020      Published: 21 June 2020
PACS:  03.67.-a (Quantum information)  
  06.90.+v (Other topics in metrology, measurements, and laboratory procedures)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11875231 and 11935012), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304202 and 2017YFA0205700), and the Fundamental Research Funds for the Central Universities (Grant No. 2018FZA3005).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/070301       OR      http://cpl.iphy.ac.cn/Y2020/V37/I7/070301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongbin Liang
Jiancheng Pei
and Xiaoguang Wang
[1] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[2] Pezzè L, Hyllus P and Smerzi A 2015 Phys. Rev. A 91 032103
[3] Liu J, Jing X and Wang X 2013 Phys. Rev. A 88 042316
[4] Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601
[5] Campos R A, Saleh B E A and Teich M C 1989 Phys. Rev. A 40 1371
[6] Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
[7] Sanders B C and Milburn G J 1995 Phys. Rev. Lett. 75 2944
[8] Jarzyna M and Demkowicz-Dobrzański R 2012 Phys. Rev. A 85 011801
[9] Gabbrielli M, Pezzè L and Smerzi A 2015 Phys. Rev. Lett. 115 163002
[10] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[11] Liu J, Yuan H, Lu X M and Wang X 2020 J. Phys. A 53 023001
[12] Tan Q S, Liao J Q, Wang X and Nori F 2014 Phys. Rev. A 89 053822
[13] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[14] Seshadreesan K P, Anisimov P M, Lee H and Dowling J P 2011 New J. Phys. 13 083026
[15] Pezzé L and Smerzi A 2013 Phys. Rev. Lett. 110 163604
[16] Takeoka M, Seshadreesan K P, You C, Izumi S and Dowling J P 2017 Phys. Rev. A 96 052118
[17] Lang M D and Caves C M 2014 Phys. Rev. A 90 025802
[18] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. Lett. 102 040403
[19] Pang S and Brun T A 2014 Phys. Rev. A 90 022117
[20] Liu J, Jing X X and Wang X 2015 Sci. Rep. 5 8565
[21] Hyllus P, Pezzé L and Smerzi A 2010 Phys. Rev. Lett. 105 120501
[22] Helstrom C W 1969 J. Stat. Phys. 1 231
[23] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[24] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[25] Zhang S J, Ma H X, Wang X, Zhou C, Bao W S and Zhang H L 2019 Chin. Phys. B 28 80304
[26] Song W, Huang Y S, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 088701
[27] Wang C Q, Zou J and Zhang Z M 2016 Chin. Phys. Lett. 33 024202
[28] Yu X, Zhao X, Shen L, Shao Y, Liu J and Wang X 2018 Opt. Express 26 16292
[29] Liu J and Yuan H 2017 Phys. Rev. A 96 042114
[30] Liu J and Yuan H 2017 Phys. Rev. A 96 012117
[31] Liu J, Jing X X, Zhong W and Wang X G 2014 Commun. Theor. Phys. 61 45
[32] Liu J, Xiong H N, Song F and Wang X 2014 Physica A 410 167
Related articles from Frontiers Journals
[1] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 070301
[2] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 070301
[3] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 070301
[4] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 070301
[5] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 070301
[6] P.-Y. Hou, L. He, F. Wang, X.-Z. Huang, W.-G. Zhang, X.-L. Ouyang, X. Wang, W.-Q. Lian, X.-Y. Chang, L.-M. Duan. Experimental Hamiltonian Learning of an 11-Qubit Solid-State Quantum Spin Register[J]. Chin. Phys. Lett., 2019, 36(10): 070301
[7] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 070301
[8] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 070301
[9] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 070301
[10] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 070301
[11] Li Chen, Dong Yan, Li-Jun Song, Shou Zhang. Dynamics of Quantum Fisher Information in Homodyne-Mediated Feedback Control[J]. Chin. Phys. Lett., 2019, 36(3): 070301
[12] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 070301
[13] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 070301
[14] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 070301
[15] Qi Yin, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo. Compressed Sensing Quantum State Tomography Assisted by Adaptive Design[J]. Chin. Phys. Lett., 2018, 35(7): 070301
Viewed
Full text


Abstract