Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 068103    DOI: 10.1088/0256-307X/37/6/068103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates
Shuai Zhang1,2, Yang Song1,2, Hang Li1,2, Jin-Mei Li3, Kai Qian1,2, Chen Liu3, Jia-Ou Wang3, Tian Qian1, Yu-Yang Zhang1,2,4, Jian-Chen Lu5, Hong Ding1,2,4, Xiao Lin1,2,4**, Jinbo Pan1,2**, Shi-Xuan Du1,2,4, Hong-Jun Gao1,2,4**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100190, China
4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
5Kunming University of Science and Technology, Kunming 650500, China
Cite this article:   
Shuai Zhang, Yang Song, Hang Li et al  2020 Chin. Phys. Lett. 37 068103
Download: PDF(1406KB)   PDF(mobile)(1396KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) materials are playing more and more important roles in both basic sciences and industrial applications. For 2D materials, strain could tune the properties and enlarge applications. Since the growth of 2D materials on substrates is often accompanied by strain, the interaction between 2D materials and substrates is worthy of careful attention. Here we demonstrate the fabrication of strained monolayer silver arsenide (AgAs) on Ag(111) by molecular beam epitaxy, which shows one-dimensional stripe structures arising from uniaxial strain. The atomic geometric structure and electronic band structure are investigated by low energy electron diffraction, scanning tunneling microscopy, x-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy and first-principle calculations. Monolayer AgAs synthesized on Ag(111) provides a platform to study the physical properties of strained 2D materials.
Received: 18 April 2020      Published: 26 May 2020
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  82.20.Wt (Computational modeling; simulation)  
Fund: *Supported by the National Key Research & Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 11604373, 61622116, and 51872284), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the University of Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/068103       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/068103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai Zhang
Yang Song
Hang Li
Jin-Mei Li
Kai Qian
Chen Liu
Jia-Ou Wang
Tian Qian
Yu-Yang Zhang
Jian-Chen Lu
Hong Ding
Xiao Lin
Jinbo Pan
Shi-Xuan Du
Hong-Jun Gao
[1] Mermin N D 1968 Phys. Rev. 176 250
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[4] Geim A K and Grigorieva I V 2013 Nature 499 419
[5] Das S, Robinson J A, Dubey M, Terrones H and Terrones M 2015 Annu. Rev. Mater. Res. 45 1
[6] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163
[7] Yu H L, Wu H Y, Zhu H J, Song G F and Xu Y 2017 Chin. Phys. Lett. 34 018101
[8] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
[9] Wang J, Hu H Y, He Y R, Deng C, Wang Q, Duan X F, Huang Y Q and Ren X M 2015 Chin. Phys. Lett. 32 088101
[10] Yu Y, Miao F, He J and Ni Z 2017 Chin. Phys. B 26 036801
[11] Song Y, Mandelli D, Hod O, Urbakh M, Ma M and Zheng Q 2018 Nat. Mater. 17 894
[12] Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
[13] Wang J, Niu J, Yan B, Li X, Bi R, Yao Y, Yu D and Wu X 2018 Proc. Natl. Acad. Sci. USA 115 9145
[14] Pan L, Wen H, Huang L, Chen L, Deng H X, Xia J B and Wei Z 2019 Chin. Phys. B 28 107504
[15] Han R and Yan Y 2018 Chin. Phys. B 27 117505
[16] Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah M S, Park N, Shin H J, Oh J H and Baek J B 2016 Proc. Natl. Acad. Sci. USA 113 7414
[17] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[18] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[19] Das S, Kim M, Lee J W and Choi W 2014 Crit. Rev. Solid State Mater. Sci. 39 231
[20] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[21] Quhe R G, Wang Y Y and Lü J 2015 Chin. Phys. B 24 088105
[22] Hisamuddin N, Zakaria U N, Zulkifli M Z, Latiff A A, Ahmad H and Harun S W 2016 Chin. Phys. Lett. 33 074208
[23] Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C, Song F, Li M, Wan C, Huang Y and Duan X 2018 Nature 562 254
[24] Hirahara T, Fukui N, Shirasawa T, Yamada M, Aitani M, Miyazaki H, Matsunami M, Kimura S, Takahashi T, Hasegawa S and Kobayashi K 2012 Phys. Rev. Lett. 109 227401
[25] Liu Y, Rodrigues J N B, Luo Y Z, Li L, Carvalho A, Yang M, Laksono E, Lu J, Bao Y, Xu H, Tan S J R, Qiu Z, Sow C H, Feng Y P, Neto A H C, Adam S, Lu J and Loh K P 2018 Nat. Nanotechnol. 13 828
[26] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382
[27] Guinea F, Katsnelson M I and Geim A K 2010 Nat. Phys. 6 30
[28] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055
[29] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[30] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[31] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[32] Anthony M T and Seah M P 1984 Surf. Interface Anal. 6 95
[33] Powell C J 2012 J. Electron Spectrosc. Relat. Phenom. 185 1
[34] Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T and Gao H J 2017 Nat. Mater. 16 717
[35] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689
Related articles from Frontiers Journals
[1] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 068103
[2] Shuai Zhang, Yang Song, Hang Li, Jin-Mei Li, Kai Qian, Chen Liu, Jia-Ou Wang, Tian Qian, Yu-Yang Zhang, Jian-Chen Lu, Hong Ding, Xiao Lin, Jinbo Pan, Shi-Xuan Du, Hong-Jun Gao. Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates *[J]. Chin. Phys. Lett., 0, (): 068103
[3] Jian Zhang, Shengxi Zhang, Xiaofang Qiu, Yan Wu, Qiang Sun, Jin Zou, Tianxin Li, Pingping Chen. MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs[J]. Chin. Phys. Lett., 2020, 37(3): 068103
[4] Lu Li, Zhi-Long Bao, Xun-Heng Ye, Jia-Wei Shen, Bo Yang, Gao-Xiang Ye, Xiang-Ming Tao. Nucleation, Growth, and Aggregation of Au Nanocrystals on Liquid Surfaces[J]. Chin. Phys. Lett., 2020, 37(2): 068103
[5] Yu-Wei Li, Xin Wang, Guan-Wen Li, Yao Wu, Yu-Zhu Pan, Yu-Bing Xu, Jing Chen, Wei Lei. Fast Liquid Phase Epitaxial Growth for Perovskite Single Crystals[J]. Chin. Phys. Lett., 2020, 37(1): 068103
[6] Han Xu, Zhen-Lin Luo, Chang-Gan Zeng, Chen Gao. Van der Waals Epitaxy of Anatase TiO$_{2}$ on mica and Its Application as Buffer Layer[J]. Chin. Phys. Lett., 2019, 36(7): 068103
[7] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 068103
[8] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 068103
[9] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-II Superlattice[J]. Chin. Phys. Lett., 2016, 33(12): 068103
[10] Ming Zhou, Yuan Cai, Yao-Peng Li, Ding-Quan Liu. Durability of Ultra-Thin Silver Films and Silver–Gold Alloy Films under UV Irradiation[J]. Chin. Phys. Lett., 2016, 33(10): 068103
[11] SUN Qing-Ling, WANG Lu, WANG Wen-Qi, SUN Ling, LI Mei-Cheng, WANG Wen-Xin, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth and Characterization of InAs1?xSbx with Different Sb Compositions on GaAs Substrates[J]. Chin. Phys. Lett., 2015, 32(10): 068103
[12] WANG Jun, HU Hai-Yang, HE Yun-Rui, DENG Can, WANG Qi, DUAN Xiao-Feng, HUANG Yong-Qing, REN Xiao-Min. Defect Reduction in GaAs/Si Films with the a-Si Buffer Layer Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(08): 068103
[13] MU Qing-Qing, LIU Lin-Fei, LI Yi-Jie. Fabrication of IBAD-MgO and PLD-CeO2 Layers for YBCO Coated Conductors[J]. Chin. Phys. Lett., 2015, 32(07): 068103
[14] HE Jie-Hui, JIANG Li-Qun, QIU Jing-Lan, CHEN Lan, WU Ke-Hui. Growth of Atomically Flat Ultra-Thin Ag Films on Si(111) by Introducing a √3×√3-Ga Buffer Layer[J]. Chin. Phys. Lett., 2014, 31(12): 068103
[15] ZHANG Peng, LI Shi-Bin, YU Hong-Ping, WU Zhi-Ming, CHEN Zhi, JIANG Ya-Dong. Polarization Induced High Al Composition AlGaN p–n Junction Grown on Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(11): 068103
Viewed
Full text


Abstract