Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 067101    DOI: 10.1088/0256-307X/37/6/067101
Fermionic Analogue of High Temperature Hawking Radiation in Black Phosphorus
Hang Liu1,5, Jia-Tao Sun1,2,5**, Chenchen Song1,5, Huaqing Huang3, Feng Liu3,4**, Sheng Meng1,4,5**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
3Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
4Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
5University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Hang Liu, Jia-Tao Sun, Chenchen Song et al  2020 Chin. Phys. Lett. 37 067101
Download: PDF(1956KB)   PDF(mobile)(2948KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Time-periodic laser driving can create nonequilibrium states not accessible in equilibrium, opening new regimes in materials engineering and topological phase transitions. We report that black phosphorus (BP) exhibits spatially nonuniform topological Floquet–Dirac states under laser illumination, mimicking the "gravity" felt by fermionic quasiparticles in the same way as that for a Schwarzschild black hole (SBH). Quantum tunneling of electrons from a type-II Dirac cone (inside BH) to a type-I Dirac cone (outside BH) emits an SBH-like Planck radiation spectrum. The Hawking temperature $T_{\rm H}$ obtained for a fermionic analog of BH in the bilayer BP is approximately 3 K, which is several orders of magnitude higher than that in previous works. Our work sheds light on increasing $T_{\rm H}$ from the perspective of engineering 2D materials by time-periodic light illumination. The predicted SBH-like Hawking radiation, accessible in BP thin films, provides clues to probe analogous astrophysical phenomena in solids.
Received: 18 May 2020      Published: 30 May 2020
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.47.-p (Spectroscopy of solid state dynamics)  
Fund: *Supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300902 and 2016YFA0202300), the National Basic Research Program of China (Grant No. 2015CB921001), the National Natural Science Foundation of China (Grant Nos. 11774396, 91850120 and 11974045), and the Strategic Priority Research Program (B) of CAS (Grant Nos. XDB30000000 and XDB330301). H. H. and F. L. were supported by U.S. DOE-BES (Grant No. DE-FG02-04ER46148).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Hang Liu
Jia-Tao Sun
Chenchen Song
Huaqing Huang
Feng Liu
Sheng Meng
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[3] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[4] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[5] Haldane F D 1988 Phys. Rev. Lett. 61 2015
[6] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[7] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[8] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[9] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[10] Koenig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[11] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[12] Zhu Z, Winkler G W, Wu Q, Li J and Soluyanov A A 2016 Phys. Rev. X 6 031003
[13] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037
[14] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[15] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[16] Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[17] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[18] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[19] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
[20] Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
[21] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G Q, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C L, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
[22] Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M and Ding H 2015 Phys. Rev. Lett. 115 217601
[23] Volovik G E and Zhang K 2017 J. Low Temp. Phys. 189 276
[24] Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y and Yang S A 2017 npj Quantum Mater. 2 23
[25] Huang H, Jin K H and Liu F 2018 Phys. Rev. B 98 121110(R)
[26] Liu H, Sun J T, Cheng C, Liu F and Meng S 2018 Phys. Rev. Lett. 120 237403
[27] Westström A and Ojanen T 2017 Phys. Rev. X 7 041026
[28] Hawking S W 1974 Nature 248 30
[29] Hartle J B and Hawking S W 1976 Phys. Rev. D 13 2188
[30] Bardeen J M 1981 Phys. Rev. Lett. 46 382
[31] Unruh W G 1981 Phys. Rev. Lett. 46 1351
[32] Unruh W G 1995 Phys. Rev. D 51 2827
[33] Garay L J, Anglin J R, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 85 4643
[34] Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A and Steinhauer J 2010 Phys. Rev. Lett. 105 240401
[35] Garay L J, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. A 63 023611
[36] Steinhauer J 2016 Nat. Phys. 12 959
[37] Horstmann B, Reznik B, Fagnocchi S and Cirac J I 2010 Phys. Rev. Lett. 104 250403
[38] Giovanazzi S 2005 Phys. Rev. Lett. 94 061302
[39] Leonhardt U and Piwnicki P 2000 Phys. Rev. Lett. 84 822
[40] Leonhardt U 2002 Nature 415 406
[41] Schutzhold R and Unruh W G 2005 Phys. Rev. Lett. 95 031301
[42] Philbin T G, Kuklewicz C, Robertson S, Hill S, Konig F and Leonhardt U 2008 Science 319 1367
[43] Belgiorno F, Cacciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala V G and Faccio D 2010 Phys. Rev. Lett. 105 203901
[44] Schutzhold R and Unruh W G 2011 Phys. Rev. Lett. 107 149401
[45] Elazar M, Fleurov V and Bar-Ad S 2012 Phys. Rev. A 86 063821
[46] Liberati S, Prain A and Visser M 2012 Phys. Rev. D 85 084014
[47] Unruh W G and Schützhold R 2003 Phys. Rev. D 68 024008
[48] Unruh W G and Schützhold R 2012 Phys. Rev. D 86 064006
[49] Han T, Kribs G D and McElrath B 2003 Phys. Rev. Lett. 90 031601
[50] Corda C 2015 Class. Quantum Grav. 32 195007
[51] Kerner R and Mann R B 2008 Class. Quantum Grav. 25 095014
[52] Ling X, Wang H, Huang S X, Xia F N and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. USA 112 4523
[53] Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[54] Deng B, Tran V, Xie Y, Jiang H, Li C, Guo Q, Wang X, Tian H, Koester S J, Wang H, Cha J J, Xia Q, Yang L and Xia F 2017 Nat. Commun. 8 14474
[55] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[56] Kim J, Baik S S, Jung S W, Sohn Y, Ryu S H, Choi H J, Yang B J and Kim K S 2017 Phys. Rev. Lett. 119 226801
[57] Zhao J, Yu R, Weng H and Fang Z 2016 Phys. Rev. B 94 195104
[58] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[59] Dutreix C, Stepanov E A and Katsnelson M I 2016 Phys. Rev. B 93 241404
[60] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[61] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[62] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[63] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[64] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[65] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[66] Meng S and Kaxiras E 2008 J. Chem. Phys. 129 054110
[67]Volovik G E, The Universe in a Helium Droplet (Oxford: Oxford University Press)
[68] Parikh M K 2000 Phys. Rev. Lett. 85 5042
[69] Roberts A, Cormode D, Reynolds C, Newhouse-Illige T, LeRoy B J and Sandhu A S 2011 Appl. Phys. Lett. 99 051912
[70] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453
[71] Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A and Gedik N 2016 Nat. Phys. 12 306
[72] Wiebe J, Wachowiak A, Meier F, Haude D, Foster T, Morgenstern M and Wiesendanger R 2004 Rev. Sci. Instrum. 75 4871
[73] Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
Related articles from Frontiers Journals
[1] Chao Wang, Yun-Xian Liu, Xin Chen, Pin Lv, Hai-Rui Sun, Xiao-Bing Liu. Stable Compositions, Structures and Electronic Properties in K–Ga Systems Under Pressure[J]. Chin. Phys. Lett., 2020, 37(2): 067101
[2] Hong-Yu Yu, Nan Gao, Hong-Dong Li, Xu-Ri Huang, Tian Cui. Comparative Study of Substitutional N and Substitutional P in Diamond[J]. Chin. Phys. Lett., 2019, 36(11): 067101
[3] Xuan Wen, Ke Yang, Hua Wu. Contrasting Magnetism in Isovalent Layered LaSr$_{3}$NiRuO$_{4}$H$_{4}$ and LaSrNiRuO$_{4}$ due to Distinct Spin-Orbital States[J]. Chin. Phys. Lett., 2019, 36(7): 067101
[4] Lin Feng, Xue-Ying Zhang. First-Principles Investigation on the Fully Compensated Ferrimagnetic Behavior in Ti$_{2}$NbSb and TiZrNbSb[J]. Chin. Phys. Lett., 2019, 36(6): 067101
[5] Baoan Liu, Suye Yu, Xiangcao Li, Xin Ju. Electronic Structure and Optical Property Calculation of an Oxygen Vacancy in NH$_{4}$H$_{2}$PO$_{4}$ Crystals[J]. Chin. Phys. Lett., 2019, 36(3): 067101
[6] Dawei Zhou, Yangbing Zheng, Chunying Pu, Zhuo Wang, Xin Tang. Computational Prediction to Two-Dimensional SnAs[J]. Chin. Phys. Lett., 2018, 35(10): 067101
[7] Cheng Hu, Jian-Fa Zhao, Ying Ding, Jing Liu, Qiang Gao, Lin Zhao, Guo-Dong Liu, Li Yu, Chang-Qing Jin, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca$_2$CuO$_2$Cl$_2$[J]. Chin. Phys. Lett., 2018, 35(6): 067101
[8] Li-Yuan Rong, Xun Shi, Pierre Richard, Yun-Lei Sun, Guang-Han Cao, Xiang-Zhi Zhang, Jun-Zhang Ma, Ming Shi, Yao-Bo Huang, Tian Qian, Hong Ding, Ren-Zhong Tai. Coexistence of Polaronic States and Superconductivity in Iron-Pnictide Compound Ba$_{2}$Ti$_{2}$Fe$_{2}$As$_{4}$O[J]. Chin. Phys. Lett., 2018, 35(5): 067101
[9] Li-Wei Jiang, Ya-Xiang Lu, Yue-Sheng Wang, Li-Lu Liu, Xing-Guo Qi, Cheng-Long Zhao, Li-Quan Chen, Yong-Sheng Hu. A High-Temperature $\beta$-Phase NaMnO$_{2}$ Stabilized by Cu Doping and Its Na Storage Properties[J]. Chin. Phys. Lett., 2018, 35(4): 067101
[10] Ning-Ning Zu, Rui Li, Ya-Hui Zheng, Lin Chen. First-Principles Calculation for the Half Metallic Properties of La$_{2}$NbMnO$_{6}$[J]. Chin. Phys. Lett., 2017, 34(10): 067101
[11] Chen-Lu Wang, Yan Zhang, Jian-Wei Huang, Guo-Dong Liu, Ai-Ji Liang, Yu-Xiao Zhang, Bing Shen, Jing Liu, Cheng Hu, Ying Ding, De-Fa Liu, Yong Hu, Shao-Long He, Lin Zhao, Li Yu, Jin Hu, Jiang Wei, Zhi-Qiang Mao, You-Guo Shi, Xiao-Wen Jia, Feng-Feng Zhang, Shen-Jin Zhang, Feng Yang, Zhi-Min Wang, Qin-Jun Peng, Zu-Yan Xu , Chuang-Tian Chen, Xing-Jiang Zhou. Evidence of Electron-Hole Imbalance in WTe$_2$ from High-Resolution Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(9): 067101
[12] Abdelkader Khouidmi, Hadj Baltache, Ali Zaoui. Magnetic and Electronic Properties of Double Perovskite Ba$_{2}$SmNbO$_{6 }$ without Octahedral Tilting by First Principle Calculations[J]. Chin. Phys. Lett., 2017, 34(7): 067101
[13] Jin-Lian Lu, Wei Luo, Xue-Yang Li, Sheng-Qi Yang, Jue-Xian Cao, Xin-Gao Gong, Hong-Jun Xiang. Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice[J]. Chin. Phys. Lett., 2017, 34(5): 067101
[14] Pan Liu, Wei-Hua Wang, Wei-Chao Wang, Ya-Hui Cheng, Feng Lu, Hui Liu. D-Type Anti-Ferromagnetic Ground State in Ca$_{2}$Mn$_{2}$O$_{5}$[J]. Chin. Phys. Lett., 2017, 34(2): 067101
[15] Jun Ma, Bin-Bin Fu, Jun-Zhang Ma, Ling-Yuan Kong, Di Chen, Ji-Feng Shao, Chang-Jin Zhang, Tian Qian, Yu-Heng Zhang, Hong Ding. Experimental Investigation of Electronic Structure of La(O,F)BiSe$_{2}$[J]. Chin. Phys. Lett., 2016, 33(12): 067101
Full text