Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 066401    DOI: 10.1088/0256-307X/37/6/066401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator
Cuiying Pei1†, Yunyouyou Xia1,2,3†, Jiazhen Wu4, Yi Zhao1, Lingling Gao1, Tianping Ying4, Bo Gao5, Nana Li5, Wenge Yang5, Dongzhou Zhang6, Huiyang Gou5, Yulin Chen1,7,8, Hideo Hosono4, Gang Li1,8**, Yanpeng Qi1**
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
5Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
6Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA
7Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
8ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China
Cite this article:   
Cuiying Pei, Yunyouyou Xia, Jiazhen Wu et al  2020 Chin. Phys. Lett. 37 066401
Download: PDF(5392KB)   PDF(mobile)(5388KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, natural van der Waals heterostructures of (MnBi$_{2}$Te$_{4}$)$_{m}$(Bi$_{2}$Te$_{3}$)$_{n}$ have been theoretically predicted and experimentally shown to host tunable magnetic properties and topologically nontrivial surface states. We systematically investigate both the structural and electronic responses of MnBi$_{2}$Te$_{4}$ and MnBi$_{4}$Te$_{7}$ to external pressure. In addition to the suppression of antiferromagnetic order, MnBi$_{2}$Te$_{4}$ is found to undergo a metal–semiconductor–metal transition upon compression. The resistivity of MnBi$_{4}$Te$_{7}$ changes dramatically under high pressure and a non-monotonic evolution of $\rho (T)$ is observed. The nontrivial topology is proved to persist before the structural phase transition observed in the high-pressure regime. We find that the bulk and surface states respond differently to pressure, which is consistent with the non-monotonic change of the resistivity. Interestingly, a pressure-induced amorphous state is observed in MnBi$_{2}$Te$_{4}$, while two high-pressure phase transitions are revealed in MnBi$_{4}$Te$_{7}$. Our combined theoretical and experimental research establishes MnBi$_{2}$Te$_{4}$ and MnBi$_{4}$Te$_{7}$ as highly tunable magnetic topological insulators, in which phase transitions and new ground states emerge upon compression.
Received: 17 April 2020      Published: 09 May 2020
PACS:  64.70.Tg (Quantum phase transitions)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos. 2018YFA0704300 and 2017YFE0131300, the National Natural Science Foundation of China under Grant Nos. U1932217, 11974246, 11874263 and 10225417, and the Natural Science Foundation of Shanghai under Grant No. 19ZR1477300. The authors thank the support from Analytical Instrumentation Center (SPST-AIC10112914), SPST, ShanghaiTech University. This work was partially supported by Collaborative Research Project of Materials and Structures Laboratory, Tokyo Institute of Technology, Japan. Part of this research is supported by COMPRES (NSF Cooperative Agreement EAR-1661511).

?These authors contributed equally to this work.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/066401       OR      http://cpl.iphy.ac.cn/Y2020/V37/I6/066401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cuiying Pei
Yunyouyou Xia
Jiazhen Wu
Yi Zhao
Lingling Gao
Tianping Ying
Bo Gao
Nana Li
Wenge Yang
Dongzhou Zhang
Huiyang Gou
Yulin Chen
Hideo Hosono
Gang Li
Yanpeng Qi
[1]Mong R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209
[2]Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[3]He Q L, Kou X, Grutter A J, Yin G, Pan L, Che X, Liu Y, Nie T, Zhang B, Disseler S M, Kirby B J, Ratcliff I I W, Shao Q, Murata K, Zhu X, Yu G, Fan Y, Montazeri M, Han X, Borchers J A and Wang K L 2017 Nat. Mater. 16 94
[4]Wray L A, Xu S Y, Xia Y, Hsieh D, Fedorov A V, Hor Y S, Cava R J, Bansil A, Lin H and Hasan M Z 2011 Nat. Phys. 7 32
[5]Šmejkal L, Mokrousov Y, Yan B and MacDonald A H 2018 Nat. Phys. 14 242
[6]Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 Nat. Mater. 16 516
[7]Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[8]Zhu L, Wang H, Wang Y, Lv J, Ma Y, Cui Q, Ma Y and Zou G 2011 Phys. Rev. Lett. 106 145501
[9]Johnston W D and Sestrich D E 1961 J. Inorg. Nucl. Chem. 19 229
[10]Lee D S, Kim T H, Park C H, Chung C Y, Lim Y S, Seo W S and Park H H 2013 CrystEngComm 15 5532
[11]Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B and Chulkov E V 2019 J. Alloys Compd. 789 443
[12]Wu J, Liu F, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T and Hosono H 2019 Sci. Adv. 5 eaax9989
[13]Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801
[14]Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[15]Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685
[16]Hu C, Gordon K N, Liu P, Liu J, Zhou X, Hao P, Narayan D, Emmanouilidou E, Sun H, Liu Y, Brawer H, Ramirez A P, Ding L, Cao H, Liu Q, Dessau D and Ni N 2020 Nat. Commun. 11 97
[17]Chen Y, Xu L, Li J, Li Y, Wang H, Zhang C, Li H, Wu Y, Liang A, Chen C, Jung S W, Cacho C, Mao Y, Liu S, Wang M, Guo Y, Xu Y, Liu Z, Yang L and Chen Y 2019 Phys. Rev. X 9 041040
[18]Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R E, Zeng M, Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q and Liu C 2019 Phys. Rev. X 9 041038
[19]Li H, Gao S, Duan S, Xu Y, Zhu K, Tian S, Gao J, Fan W, Rao Z, Huang J, Li J, Yan D, Liu Z, Liu W, Huang Y, Li Y, Liu Y, Zhang G, Zhang P, Kondo T, Shin S, Lei H, Shi Y, Zhang W, Weng H, Qian T and Ding H 2019 Phys. Rev. X 9 041039
[20]Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416
[21]Deng Y, Yu Y, Shi M, Xu Z, Wang J, Chen X and Zhang Y 2020 Science 367 895
[22]Zhang S, Wang R, Wang X, Wei B, Chen B, Wang H, Shi G, Wang F, Jia B, Ouyang Y, Xie F, Fei F, Zhang M, Wang X, Wu D, Wan X, Song F, Zhang H and Wang B 2020 Nano Lett. 20 709
[23]Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522
[24]Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Sü V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Forster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B and Medvedev S A 2016 Nat. Commun. 7 11038
[25]Qi Y, Shi W, Naumov P G, Kumar N, Schnelle W, Barkalov O, Shekhar C, Borrmann H, Felser C, Yan B and Medvedev S A 2016 Phys. Rev. B 94 054517
[26]Qi Y, Shi W, Naumov P G, Kumar N, Sankar R, Schnelle W, Shekhar C, Chou F C, Felser C, Yan B and Medvedev S A 2017 Adv. Mater. 29 1605965
[27]Qi Y, Shi W, Werner P, Naumov P G, Schnelle W, Wang L, Rana K G, Parkin S, Medvedev S A, Yan B and Felser C 2018 npj Quantum Mater. 3 4
[28]Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[29]Prescher C and Prakapenka V B 2015 High Press. Res. 35 223
[30]Larson A C and Dreele R B V 2004 Los Alamos Natl. Laboratory Report LAUR pp 86–748
[31]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33]Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F 15 851
[34]Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[35]Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[36]Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[37]Chen K, Wang B, Yan J Q, Parker D S, Zhou J S, Uwatoko Y and Cheng J G 2019 Phys. Rev. Mater. 3 094201
[38]Mal P, Bera G, Turpu G R, Srivastava S K, Gangan A, Chakraborty B, Das B and Das P 2019 Phys. Chem. Chem. Phys. 21 15030
[39]Einaga M, Ohmura A, Nakayama A, Ishikawa F, Yamada Y and Nakano S 2011 Phys. Rev. B 83 092102
[40]Guo Z, Zhu H, Dong J, Jia Q, Gong Y, Wang Y, Li H, An P, Yang D, Zhao Y, Xing H, Li X and Chen D 2018 J. Appl. Phys. 124 065901
[41]Souchay D, Nentwig M, Günther D, Keilholz S, de Boor J, Zeugner A, Isaeva A, Ruck M, Wolter A U B, Büchner B and Oeckler O 2019 J. Mater. Chem. C 7 9939
[42]Shi M Z, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J and Chen X H 2019 Phys. Rev. B 100 155144
[43]Yan J Q, Liu Y H, Parker D, McGuire M A and Sales B C 2019 arXiv:1910.06273
[44]Hu C, Ding L, Gordon K N, Ghosh B, Li H, Lian S W, Linn A G, Tien H J, Huang C Y, Reddy P V S, Singh B, Agarwal A, Bansil A, Xu S Y, Lin H, Cao H, Chang T R, Dessau D and Ni N 2019 arXiv:1910.12847
Related articles from Frontiers Journals
[1] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 066401
[2] Wang-Jun Lu, Zhen Li, Le-Man Kuang. Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System[J]. Chin. Phys. Lett., 2018, 35(11): 066401
[3] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 066401
[4] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 066401
[5] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 066401
[6] ZHANG Hong-Biao, TIAN Li-Jun,. Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models[J]. Chin. Phys. Lett., 2010, 27(5): 066401
Viewed
Full text


Abstract