Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 050501    DOI: 10.1088/0256-307X/37/5/050501
GENERAL |
Self-Assembly of Dimer Motors under Confined Conditions
An Zhou1, Li-Yan Qiao1, Gui-Na Wei2**, Zhou-Ting Jiang3, Ye-Hua Zhao1**
1Department of Physics, Hangzhou Dianzi University, Hangzhou 310018
2Departments of Renal Medicine, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009
3Department of Physics, China Jiliang University, Hangzhou 310018
Cite this article:   
An Zhou, Li-Yan Qiao, Gui-Na Wei et al  2020 Chin. Phys. Lett. 37 050501
Download: PDF(843KB)   PDF(mobile)(844KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chemically synthetic nanomotors can consume fuel in the environment and utilize the self-generated concentration gradient to self-propel themselves in the system. We study the collective dynamics of an ensemble of sphere dimers built from linked catalytic and noncatalytic monomers. Because of the confinement from the fuel field and the interactions among motors, the ensemble of dimer motors can self-organize into various nanostructures, such as a radial pattern in the spherical fuel field and a staggered radial pattern in a cylindrical fuel field. The influence of the dimer volume fraction on the self-assembly is also investigated and the formed nanostructures are analyzed in detail. The results presented here may give insight into the application of the self-assembly of active materials.
Received: 21 January 2020      Published: 25 April 2020
PACS:  05.40.Jc (Brownian motion)  
  82.70.Dd (Colloids)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11674080, 11974094, and 21873087).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/050501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
An Zhou
Li-Yan Qiao
Gui-Na Wei
Zhou-Ting Jiang
Ye-Hua Zhao
[1]Chen C, Liu S, Shi X Q, Chaté H and Wu Y L 2017 Nature 542 210
[2]Peng Y, Lai L P, Tai Y S, Zhang K C, Xu X L and Cheng X 2016 Phys. Rev. Lett. 116 068303
[3]Chen X, Dong X, Be'er A, Swinney H L and Zhang H P 2012 Phys. Rev. Lett. 108 148101
[4]Shi H, Ma S W, Zhang R J and Yuan J H 2019 Sci. Adv. 5 eaau6885
[5]Chen J X, Chen Y G and Kapral R 2018 Adv. Sci. 5 1800028
[6]Robertson B, Huang M J, Chen J X and Kapral R 2018 Acc. Chem. Res. 51 2355
[7]Chen J X, Chen Y G and Ma Y Q 2016 Soft Matter 12 1876
[8]Colberg P H, Reigh S Y, Robertson B, Kapral R 2014 Acc. Chem. Res. 47 2
[9]Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 13424
[10]Ozin G A, Manners I, Fournier-Bidoz S and Arsenault A 2005 Adv. Mater. 17 3011
[11]Valadares L F, Tao Y G, Zacharia N S, Kitaev V, Galembeck F, Kapral R and Ozin G A 2010 Small 6 565
[12]Gao C Y, Zhou C, Lin Z H, Yang M C and H Q 2019 ACS Nano 13 12758
[13]Du S N, Wang H G, Zhou C, Wang W and Zhang Z X 2020 J. Am. Chem. Soc. 142 2213
[14]Ebbens S, Jones R A L, Ryan A J, Golestanian R and Howse J R 2010 Phys. Rev. E 82 015304
[15]Thakur S and Kapral R 2012 Phys. Rev. E 85 026121
[16]Kapral R 2008 Adv. Chem. Phys. 140 89
[17]Gompper G, Ihle T, Kroll D M and Winkler R G 2008 Adv. Polym. Sci. 221 1
[18]Chen J X, Zhu J X, Ma Y Q and Cao J S 2014 Europhys. Lett. 106 18003
[19]Kapral R 2013 J. Chem. Phys. 138 020901
[20]Kapral R and Showalter K 1995 Chem. Waves Patterns Kluwer Dordrecht (Dordrecht: Kluwer)
[21]Ma J, Xu W K, Zhou P and Zhang G 2019 Physica A 536 122598
[22]Liang H, Xu J R, Chen J X, Chai Z H and Shi B C 2019 Appl. Math. Modell. 73 487
[23]Zhan S, Cui R F, Qiao L Y and Chen J X 2020 Commun. Theor. Phys. 72 015601
Related articles from Frontiers Journals
[1] Qingqing Yin, Yunyun Li, Fabio Marchesoni, Debajyoti Debnath, and Pulak K. Ghosh. Excess Diffusion of a Driven Colloidal Particle in a Convection Array[J]. Chin. Phys. Lett., 2021, 38(4): 050501
[2] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 050501
[3] HAN Jie, BAO Jing-Dong. Harmonic Noise-Induced Resonant Passing in an Inverse Harmonic Potential[J]. Chin. Phys. Lett., 2014, 31(12): 050501
[4] Roumen Tsekov. Brownian Markets[J]. Chin. Phys. Lett., 2013, 30(8): 050501
[5] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 050501
[6] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 050501
[7] LIU Jian, FAN Jian-Fen**. Relationship between the Permeation-Diffusion Parameters of a Single-File Channel[J]. Chin. Phys. Lett., 2012, 29(1): 050501
[8] KANG Yan-Mei, JIANG Yao-Lin. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems[J]. Chin. Phys. Lett., 2008, 25(10): 050501
[9] BAI Zhan-Wu. Noise-Induced Phase Transition: Zero-Dimensional Brownian Particles Varying between Ergodicity and Nonergodicity[J]. Chin. Phys. Lett., 2008, 25(4): 050501
[10] XIE Hui-Zhang, AI Bao-Quan, LIU Xue-Mei, CHENG Xiao-Bo, LIU Liang-Gang, LI Zhi-Bing. Particle Transport with Asymmetric Unbiased Forces and Entropic Barrier[J]. Chin. Phys. Lett., 2007, 24(12): 050501
[11] ZHANG Jia-Lin, YU Hong-Wei. Lorentz Invariance and Brownian Motion of Test Particles with Constant Classical Velocity in Electromagnetic Vacuum[J]. Chin. Phys. Lett., 2005, 22(12): 050501
[12] AI Bao-Quan, XIE Hui-Zhang, LIU Liang-Gang. Current Inversion in a Temperature Ratchet with Asymmetric Unbiased External Forces[J]. Chin. Phys. Lett., 2005, 22(11): 050501
[13] BAO Jing-Dong, BAI Zhan-Wu. Ballistic Diffusion of a Charged Particle in a Blackbody Radiation Field[J]. Chin. Phys. Lett., 2005, 22(8): 050501
[14] YANG Ming, LI Xiang-Lian, CAO Li, , WU Da-Jin,. Coherence Resonance in the System with Periodical Potential and Driven by Correlated Noises[J]. Chin. Phys. Lett., 2004, 21(7): 050501
[15] HU Mao-Bin, WU Qing-Song, JIANG Rui. Size Segregation in a Vibrated Tilted Compartmentalized Granular Chamber[J]. Chin. Phys. Lett., 2003, 20(7): 050501
Viewed
Full text


Abstract