Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 050303    DOI: 10.1088/0256-307X/37/5/050303
GENERAL |
Quantum Secure Multiparty Computation with Symmetric Boolean Functions
Hao Cao1,2, Wenping Ma3**, Ge Liu3, Liangdong Lü3,4, Zheng-Yuan Xue5,6**
1Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, School of Information and Network Engineering, Anhui Science and Technology University, Fengyang 233100
2School of Mathematical Science, Huaibei Normal University, Huaibei 235000
3State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071
4Department of Basic Sciences, Air Force Engineering University, Xi'an 710071
5Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006
6Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006
Cite this article:   
Hao Cao, Wenping Ma, Ge Liu et al  2020 Chin. Phys. Lett. 37 050303
Download: PDF(612KB)   PDF(mobile)(614KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a class of $n$-variable Boolean functions which can be used to implement quantum secure multiparty computation. We also give an implementation of a special quantum secure multiparty computation protocol. An advantage of our protocol is that only 1 qubit is needed to compute the $n$-tuple pairwise AND function, which is more efficient comparing with previous protocols. We demonstrate our protocol on the IBM quantum cloud platform, with a probability of correct output as high as 94.63%. Therefore, our protocol presents a promising generalization in realization of various secure multipartite quantum tasks.
Received: 28 February 2020      Published: 25 April 2020
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Supported in part by the National Key R&D Program of China (Grant No. 2017YFB0802400), the National Natural Science Foundation of China (Grant Nos. 61373171 and 11801564), the Program for Excellent Young Talents in University of Anhui Province, China (Grant No. gxyqZD2019060), the Basic Research Project of Natural Science of Shaanxi Province, China (Grant Nos. 2017JM6037 and 2017JQ1032), and the Key Project of Science Research of Anhui Province, China (Grant No. KJ2017A519).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/050303       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/050303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao Cao
Wenping Ma
Ge Liu
Liangdong Lü
Zheng-Yuan Xue
[1]Yao A C 1982 Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (Chicago, USA 3–5 November 1982) p 160
[2]Yao A C 1986 Proceedings of the 27rd Annual Symposium on Foundations of Computer Science (Toronto, Canada 27–29 October 1982) p 162
[3]Goldreich O, Micali S and Wigderson A 1987 Proceedings of the 19th Annual ACM Symposium on Theory of Computing (New York, USA 25–27 May 1987) p 218
[4]Anders J and Browne D E 2009 Phys. Rev. Lett. 102 050502
[5]Loukopoulos K and Browne D E 2010 Phys. Rev. A 81 062336
[6]Dunjko V, Kapourniotis T and Kashefi E 2016 Quantum Inf. Comput. 16 0061
[7]Barz S, Dunjko V, Schlederer F, Moore M, Kashefi E and Walmsley I A 2016 Phys. Rev. A 93 032339
[8]Clementi M, Pappa A, Eckstein A, Walmsley I A, Kashefi E and Barz S 2017 Phys. Rev. A 96 062317
[9]Cao H and Ma W 2018 Laser Phys. Lett. 15 095201
[10]He G P 2018 Phys. Scr. 93 095001
[11]Huang Y, Evans D, Katz J and Malka L 2011 Proceedings of the 20th USENIX Security Symposium (San Francisco, USA 10–12 August 2011) p 331
[12]Wei C Y, Cai X Q, Wang T Y, Qin S J, Gao F and Wen Q Y 2020 IEEE J. Sel. Area. Commun. (in press)
[13]Wei C Y, Cai X Q, Liu B, Wang T Y and Gao F 2018 IEEE Trans. Comput. 67 2
[14]Gao F, Qin S J, Huang W and Wen Q Y 2019 Sci. Chin.-Phys. Mech. Astron. 62 070301
[15]Yang Y G, Yang R, Cao W F, Chen X B, Zhou Y H and Shi W M 2017 Int. J. Theor. Phys. 56 1286
[16]Lo H K 1997 Phys. Rev. A 56 1154
[17]Lo H K and Chau H F 1997 Phys. Rev. Lett. 78 3410
[18]Yang Y G, Liu Z C, Li J, Chen X B, Zuo H J, Zhou Y H and Shi W M 2016 Phys. Lett. A 380 4033
Related articles from Frontiers Journals
[1] Bin-Lin Chen and Dan-Bo Zhang. Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization[J]. Chin. Phys. Lett., 2023, 40(1): 050303
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050303
[3] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 050303
[4] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 050303
[5] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 050303
[6] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 050303
[7] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 050303
[8] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 050303
[9] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 050303
[10] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 050303
[11] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 050303
[12] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 050303
[13] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 050303
[14] SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang, LIANG Wen-Ye, ZHANG Chun-Mei, HAN Yun-Guang, CHEN Wei, HAN Zheng-Fu. Phase-Coding Self-Testing Quantum Random Number Generator[J]. Chin. Phys. Lett., 2015, 32(08): 050303
[15] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 050303
Viewed
Full text


Abstract