Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 048501    DOI: 10.1088/0256-307X/37/4/048501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Analogue Soliton with Variable Mass in Super-Conducting Quantum Interference Devices
Ying Yang1, Ze-Hua Tian2, Ji-Liang Jing1**
1Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081
2CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Ying Yang, Ze-Hua Tian, Ji-Liang Jing 2020 Chin. Phys. Lett. 37 048501
Download: PDF(1530KB)   PDF(mobile)(1521KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is difficult to investigate the behavior of solitons in realistic inhomogeneity media in experiment due to inhomogeneity of the media and noise from the unwanted coupling. We propose to use a waveguide-like transmission line which is based on direct-current super-conducting quantum interference devices to simulate behavior of solitons because we find that the behavior of the node flux in this transmission is similar to that of solitons with variable mass.
Received: 19 November 2019      Published: 24 March 2020
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  84.40.Az (Waveguides, transmission lines, striplines)  
  05.45.Yv (Solitons)  
  52.35.Sb (Solitons; BGK modes)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11875025, 11475061, and 11675052, and the CAS Key Laboratory for Research in Galaxies and Cosmology, Chinese Academy of Sciences under Grant No. 18010203.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/048501       OR      http://cpl.iphy.ac.cn/Y2020/V37/I4/048501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying Yang
Ze-Hua Tian
Ji-Liang Jing
[1]Kochendörfer A and Seeger A 1950 Z. Phys. 127 533
[2]Seeger A and Kochendörfer A 1951 Z. Phys. 130 321
[3]Seeger A, Donth H and Kochendürfer A 1953 Z. Phys. 134 173
[4]Scott A C 1970 Il Nuovo Cimento B 69 241
[5]McLaughlin D W and Scott A C 1978 Phys. Rev. A 18 1652
[6]Quintero N R and Kevrekidis P G 2001 Phys. Rev. E 64 056608
[7]Baryakhtar V G 1994 Dynamics of Topological Magnetic Solitons (Berlin: Springer)
Remoissenet M 2003 Waves Called Solitons (Berlin: Springer)
Ludu A 2007 Nonlinear Waves and Solitons on Contours and Closed Surfaces (Berlin: Springer)
[8]Goldobin E et al 2004 Phys. Rev. Lett. 92 057005
[9]Yakushevich L V et al 2002 Phys. Rev. E 66 016614
[10]Bernardini A E et al 2015 Eur. Phys. J. Plus 130 97
[11]Salerno M and Kivshar Y S 1994 Phys. Lett. A 193 263
[12]Sen D and Lal S 2000 Europhys. Lett. 52 337
[13]Kundu A 2007 Phys. Rev. Lett. 99 154101
[14]Riazi N and Sheykhi A 2006 Phys. Rev. D 74 025003
[15]Nation P D, Johansson J R, Blencowe M P and Nori F 2012 Rev. Mod. Phys. 84 1
[16]Zhang G F et al 2013 Chin. Phys. Lett. 30 018501
[17]Li H et al 2016 Chin. Phys. B 25 068501
[18]Li G et al 2018 Chin. Phys. B 27 068501
[19]Yang k et al 2018 Chin. Phys. B 27 050701
[20]Li B et al 2018 Chin. Phys. B 27 020701
[21]Nation P D et al 2009 Phys. Rev. Lett. 103 087004
[22]Sabín C 2016 Phys. Rev. D 94 081501
[23]Álvarez L G et al 2015 Phys. Rev. Lett. 114 070502
[24]Marcos D et al 2013 Phys. Rev. Lett. 111 110504
[25]Mezzacapo A et al 2015 Phys. Rev. Lett. 115 240502
[26]Wilson C M et al 2011 Nature 479 376
[27]Lähteenmäki P et al 2013 Proc. Natl. Acad. Sci. USA 110 4234
[28]Lindkvist J et al 2014 Phys. Rev. A 90 052113
[29]Felicetti S et al 2015 Phys. Rev. B 92 064501
[30]Corona-Ugalde P, Martín-Martínez E M, Wilson C M and Mann R B 2016 Phys. Rev. A 93 012519
[31]Lock M P E and Fuentes I 2017 Time in Physics chap 5 pp 51–68
[32]Friis N, Lee A R, Truong K, Sabín C, Solano E, Johansson G and Fuentes I 2013 Phys. Rev. Lett. 110 113602
[33]Álvarez L G, Felicetti S, Rico E, Solano E and Sabín C 2017 Sci. Rep. 7 1
[34]Johansson J R, Johansson G, Wilson C M and Nori F 2009 Phys. Rev. Lett. 103 147003
[35]Tian Z H, Jing J L and Dragan A 2017 Phys. Rev. D 95 125003
[36]Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[37]You J Q and Nori F 2005 Phys. Today 58 42
[38]Astafiev O, Pashkin Y A, Nakamura Y, Yamamoto T and Tsai J S 2004 Phys. Rev. Lett. 93 267007
[39]Castellanos-Beltran M A and Lehnert K W 2007 Appl. Phys. Lett. 91 083509
[40]Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R and Lehnert K W 2008 Nat. Phys. 4 929
[41]Barashenkov I V, Bogdan M M and Korobov V I 1991 Europhys. Lett. 15 113
[42]Braiman Y, Lindner J F and Ditto W L 1995 Nature 378 465
[43]Gavrielides A, Kottos T, Kovanis V and Tsironis G P 1998 Phys. Rev. E 58 5529
Related articles from Frontiers Journals
[1] Hao Li, Jian-She Liu, Han Cai, Ying-Shan Zhang, Qi-Chun Liu, Gang Li, Wei Chen. True Random Number Generator Realized by Extracting Entropy from a Negative-Inductance Superconducting Quantum Interference Device[J]. Chin. Phys. Lett., 2017, 34(1): 048501
[2] Chao-Quan Wang, Jian Zou, Zhi-Ming Zhang. Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System[J]. Chin. Phys. Lett., 2016, 33(02): 048501
[3] ZHAO Hu, LI Tie-Fu, LIU Jian-She, CHEN Wei. Charge-Related SQUID and Tunable Phase-Slip Flux Qubit[J]. Chin. Phys. Lett., 2014, 31(03): 048501
[4] ZHANG Guo-Feng, ZHANG Yi, Hans-Joachim Krause, KONG Xiang-Yan, Andreas Offenhäusser, XIE Xiao-Ming. A SQUID Bootstrap Circuit with a Large Parameter Tolerance[J]. Chin. Phys. Lett., 2013, 30(1): 048501
[5] QIU Long-Qing, LIU Chao, DONG Hui, XU Lu, ZHANG Yi, Hans-Joachim Krause, XIE Xiao-Ming, Andreas Offenhäusser. Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment[J]. Chin. Phys. Lett., 2012, 29(10): 048501
[6] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 048501
[7] ZHANG Feng-Yang, PEI Pei, LI Chong**, SONG He-Shan** . Manipulating Quantum State in Superconducting Dressed-State Systems[J]. Chin. Phys. Lett., 2011, 28(12): 048501
[8] ZHANG Shu-Lin, LIU Yang-Bo, LIU Ming, WANG Yong-Liang, KONG Xiang-Yan, XIE Xiao-Ming** . A Room-Temperature Pre-calibration Procedure for Gradiometer Sifting[J]. Chin. Phys. Lett., 2011, 28(3): 048501
[9] Saburo Tanaka, Tomohiro Akai, Makoto Takemoto, Yoshimi Hatsukade, Takeyoshi Ohtani, Yoshio Ikeda, Shuichi Suzuki. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer[J]. Chin. Phys. Lett., 2010, 27(8): 048501
[10] DONG Hui, , ZHANG Yi, KRAUSE Hans-Joachim, XIE Xiao-Ming. Effect of HTS Superconductors on Homogeneity of Measurement Field in Low Field Nuclear Magnetic Resonance Detection[J]. Chin. Phys. Lett., 2010, 27(8): 048501
[11] LIU Dang-Ting, TIAN Ye, REN Yu-Feng, YU Hong-Wei, ZHANG Li-Hua, YANGQian-Sheng, CHEN Geng-Hua. A Novel Filter Scheme of Data Processing for SQUID-Based Magnetocardiogram[J]. Chin. Phys. Lett., 2008, 25(7): 048501
[12] ZHENG An-Shou, SHEN Xiao-Fang, LIU Ji-Bing, BI Jie, DU Qiu-Jiao,. Preparation of W State with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage[J]. Chin. Phys. Lett., 2008, 25(4): 048501
[13] MA Chi, ZHANG Shi-Jun, HE Juan, YE Liu. Implementation of a Controlled-NOT Gate Using Superconducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2008, 25(2): 048501
[14] LI Bin-Bin, SHEN Hong-Lie, ZHANG Rong, XIU Xiang-Qiang, XIE Zhi. Structural and Magnetic Properties of Codoped ZnO based Diluted Magnetic Semiconductors[J]. Chin. Phys. Lett., 2007, 24(12): 048501
[15] ZHENG An-Shou, WAN Zhen-Zhu, BI Jie. Realization of Greenberg--Horne--Zeilinger (GHZ) and W Entangled States with Multiple Superconducting Quantum-Interference Device Qubits in Cavity QED[J]. Chin. Phys. Lett., 2006, 23(12): 048501
Viewed
Full text


Abstract