Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 047801    DOI: 10.1088/0256-307X/37/4/047801
High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect
Yanling Wu1†, Xia Yin2†, Jiazila Hasaien1,3, Yang Ding2**, Jimin Zhao1,3,4**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Center for High-Pressure Sciences and Technology Advanced Research, Beijing 100094
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
4Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Yanling Wu, Xia Yin, Jiazila Hasaien et al  2020 Chin. Phys. Lett. 37 047801
Download: PDF(4486KB)   PDF(mobile)(4743KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By integrating pump-probe ultrafast spectroscopy with diamond anvil cell (DAC) technique, we demonstrate a time-resolved ultrafast dynamics study on non-equilibrium quasiparticle (QP) states in Sr$_{2}$IrO$_{4}$ under high pressure. On-site in situ condition is realized, where both the sample and DAC have fixed position during the experiment. The QP dynamics exhibits a salient pressure-induced phonon bottleneck feature at 20 GPa, which corresponds to a gap shrinkage in the electronic structure. A structural transition is also observed at 32 GPa. In addition, the slowest relaxation component reveals possible heat diffusion or pressure-controlled local spin fluctuation associated with the gap shrinkage. Our work enables precise pressure dependence investigations of ultrafast dynamics, paving the way for reliable studies of high-pressure excited state physics.
Received: 13 February 2020      Published: 24 March 2020
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  78.47.jg (Time resolved reflection spectroscopy)  
  62.50.-p (High-pressure effects in solids and liquids)  
  71.38.-k (Polarons and electron-phonon interactions)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303603, 2016YFA0300303, 2018YFA0305703), the National Natural Science Foundation of China (Grant Nos. 11774408, 11574383, 11874075, U1530402), the Strategic Priority Research Program of CAS (Grant No. XDB30000000), the International Partnership Program of Chinese Academy of Sciences (Grant Nos. GJHZ1826, GJHZ1403), the Beijing Natural Science Foundation (Grant No. 4191003), the Science Challenge Project (Grant No. TZ2016001), and the CAS Interdisciplinary Innovation Team.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yanling Wu
Xia Yin
Jiazila Hasaien
Yang Ding
Jimin Zhao
[1]Orenstein J 2012 Phys. Today 65 44
[2]Zhao J M, Bragas A V, Lockwood D J and Merlin R 2004 Phys. Rev. Lett. 93 107203
[3]Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K and Zhao J M 2016 Phys. Rev. Lett. 116 107001
[4]Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S N, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X and Zhao J M 2019 arXiv:1910.09859
[5]Demsar J, Podobnik B, Kabanov V V, Wolf T and Mihailovic D 1999 Phys. Rev. Lett. 82 4918
[6]Hsieh D, Mahmood F, Torchinsky D H, Cao G and Gedik N 2012 Phys. Rev. B 86 035128
[7]Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K, Uzawa Y, Terai H, Wang Z, Aoki H and Shimano R 2014 Science 345 1145
[8]Sun F, Wu Q, Wu Y L, Zhao H, Yi C J, Tian Y C, Liu H W, Shi Y G, Ding H, Dai X, Richard P and Zhao J M 2017 Phys. Rev. B 95 235108
[9]Hu L L, Yang M, Wu Y L, Wu Q, Zhao H, Sun F, Wang W, He R, He S L, Zhang H, Huang R J, Li L F, Shi Y G and Zhao J M 2019 Phys. Rev. B 99 094307
[10]Guo J, Zhou Y Z, Huang C, Cai S, Sheng Y T, Gu G D, Yang C L, Lin G C, Yang K, Li A G, Wu Q, Xiang T and Sun L L 2020 Nat. Phys. 16 295
[11]Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
[12]Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett. 111 087001
[13]Bahramy M S, Yang B J, Arita R and Nagaosa N 2012 Nat. Commun. 3 679
[14]Sun J P, Jiao Y Y, Yi C J, Dissanayake S E, Matsuda M, Uwatoko Y, Shi Y G, Li Y Q, Fang Z and Cheng J G 2019 Phys. Rev. Lett. 123 047201
[15]Ravichandran N K and Broido D 2019 Nat. Commun. 10 827
[16]Shang Y X, Hong F, Dai J H, Yu H, Lu Y N, Liu E K, Yu X H, Liu G Q and Pan X Y 2019 Chin. Phys. Lett. 36 086201
[17]Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R and Yao N Y 2019 Science 366 1349
[18]Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K and Yang S 2019 Science 366 1355
[19]Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P and Roch J F 2019 Science 366 1359
[20]Kasami M, Mishina T and Nakahara J 2004 Phys. Status Solidi B 241 3113
[21]Trigo M, Chen J, Jiang M P, Mao W L, Riggs S C, Shapiro M C, Fisher I R and Reis D A 2012 Phys. Rev. B 85 081102(R)
[22]Cantaluppi1 A, Buzzi M, Jotzu G, Nicoletti D, Mitrano M, Pontiroli D, Riccò M, Perucchi A, Pietro P D and Cavalleri A 2018 Nat. Phys. 14 837
[23]Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502
[24]Torchinsky D H, Chu H, Zhao L, Perkins N B, Sizyuk Y, Qi T, Cao G and Hsieh D 2015 Phys. Rev. Lett. 114 096404
[25]Haskel D, Fabbris G, Zhernenkov M, Kong P P, Jin C Q, Cao G and van Veenendaal M 2012 Phys. Rev. Lett. 109 027204
[26]Zocco D A, Hamlin J J, White B D, Kim B J, Jeffries J R, Weir S T, Vohra Y K, Allen J W and Maple M B 2014 J. Phys.: Condens. Matter 26 255603
[27]Samanta K, Ardito F M, Souza-Neto N M and Granado E 2018 Phys. Rev. B 98 094101
[28]Afanasiev D, Gatilova A, Groenendijk D J, Ivanov B A, Gibert M, Gariglio S, Mentink J, Li J, Dasari N, Eckstein M, Rasing T, Caviglia A D and Kimel A V 2019 Phys. Rev. X 9 021020
[29]Zhao J M, Bragas A V, Merlin R and Lockwood D J 2006 Phys. Rev. B 73 184434
[30]Ge M, Qi T F, Korneta O B, De Long D E, Schlottmann P, Crummett W P and Cao G 2011 Phys. Rev. B 84 100402(R)
[31]Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 82 2731
[32]Perfetti L, Loukakos P A, Lisowski M, Bovensiepen U, Wolf M, Berger H, Biermann S and Georges A 2008 New J. Phys. 10 053019
[33]Rothwarf A and Taylor B N 1967 Phys. Rev. Lett. 19 27
[34]Kabanov V V, Demsar J and Mihailovic D 2005 Phys. Rev. Lett. 95 147002
[35]Giannetti C, Capone M, Fausti D, Fabrizio M, Parmigiani F and Mihailovic D 2016 Adv. Phys. 65 58
[36]Kabanov V V, Demsar J, Podobnik B and Mihailovic D 1999 Phys. Rev. B 59 1497
[37]Anderson P W 1959 Phys. Rev. 114 1002
[38]Ogasawara T, Ohgushi K, Tomioka Y, Takahashi K S, Okamoto H, Kawasaki M and Tokura Y 2005 Phys. Rev. Lett. 94 087202
[39]Chia E E M, Talbayev D, Zhu J X, Yuan H Q, Park T, Thompson J D, Panagopoulos C, Chen G F, Luo J L, Wang N L and Taylor A J 2010 Phys. Rev. Lett. 104 027003
[40]Fujiyama S, Ohsum H, Komesu T, Matsuno J, Kim B J, Takata M, Arima T and Takagi H 2012 Phys. Rev. Lett. 108 247212
[41]Ishii K, Jarrige I, Yoshida M, Ikeuchi K, Mizuki J, Ohashi K, Takayama T, Matsuno J and Takagi H 2011 Phys. Rev. B 83 115121
[42]Zhang J B, Yan D Y, Yesudhas S, Deng H S, Xiao H, Chen B J, Sereika R, Yin X, Yi C J, Shi Y G, Liu Z X, Pärschke E M, Chen C C, Chang J, Ding Y and Mao H K 2019 npj Quantum Mater. 4 23
Related articles from Frontiers Journals
[1] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 047801
[2] Yu-Zhu Liu, Jin-You Long, Lin-Hua Xu, Xiang-Yun Zhang, Bing Zhang. Probing Ultrafast Dissociation Dynamics of Chloroiodomethane in the B Band by Time-Resolved Mass Spectrometry[J]. Chin. Phys. Lett., 2017, 34(3): 047801
[3] Jiang Qin, Peng Lang, Bo-Yu Ji, N. K. Alemayehu, Han-Yan Tao, Xun Gao, Zuo-Qiang Hao, Jing-Quan Lin. Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 047801
[4] QIN Jiang, JI Bo-Yu, HAO Zuo-Qiang, LIN Jing-Quan. Probing of Ultrafast Plasmon Dynamics on Gold Bowtie Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2015, 32(06): 047801
[5] LIU Yu-Zhu, KNOPP Gregor, XIAO Shao-Rong, GERBER Thomas. Ultrafast Imaging of Electronic Relaxation in Ortho-xylene: New Features from Fragmentation-Ion Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(12): 047801
[6] YANG Wen-Xing, CHEN Ai-Xi, BAI Yan-Feng, LU Jia-Wei. Carrier-Envelope-Phase Control of Single-Electron Transport in Coupled Quantum Dots[J]. Chin. Phys. Lett., 2013, 30(11): 047801
[7] CHEN Zhi, WEN Qi-Ye, DONG Kai, SUN Dan-Dan, QIU Dong-Hong, ZHANG Huai-Wu. Ultrafast and Broadband Terahertz Switching Based on Photo-Induced Phase Transition in Vanadium Dioxide Films[J]. Chin. Phys. Lett., 2013, 30(1): 047801
[8] CHEN Tao, SI Jin-Hai, LIU Xiang, CHEN Feng, HOU Xun. The Influence of Coherent Transient Energy Transfer on Femtosecond Time-Resolved Z-Scan Measurements[J]. Chin. Phys. Lett., 2012, 29(10): 047801
[9] YAN Li-He, JIA Sen, SI Jin-Hai, MATSUO Shigeki, CHEN Feng, HOU Xun. Application of Optical Kerr Gate with SrTiO3 Crystal in Acquisition of Gated Spectra from a Supercontinuum[J]. Chin. Phys. Lett., 2012, 29(7): 047801
[10] SHEN Jian, ZHANG Huai-Wu, LI Yuan-Xun. Terahertz Emission of Ferromagnetic Ni-Fe Thin Films Excited by Ultrafast Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(6): 047801
[11] DING Jin-Liang, WANG Yao-Chuan, ZHOU Hui, CHEN Qiang, QIAN Shi-Xiong**, FENG Zhe-Chuan, LU Wei-Jie . Nonlinear Optical Properties and Ultrafast Dynamics of Undoped and Doped Bulk SiC[J]. Chin. Phys. Lett., 2010, 27(12): 047801
[12] LIU Gui-Yuan, HAN Jun-Ling, LIU Man, TENG Shu-Yun, CHENG Chuan-Fu. Waveform Distortions in Femtosecond Laser Pulses Transmitting through Coated Optical Fiber Probes[J]. Chin. Phys. Lett., 2010, 27(6): 047801
[13] ZHANG Wei, TENG Hao, YUN Chen-Xia, ZHONG Xin, HOU Xun, WEI Zhi-Yi. Generation of Sub-2 Cycle Optical Pulses with a Differentially Pumped Hollow Fiber[J]. Chin. Phys. Lett., 2010, 27(5): 047801
[14] ZHANG Wei, TENG Hao, YUN Chen-Xia, YE Peng, ZHAN Min-Jie, ZHONG Shi-Yang, HE Xin-Kui, WANG Li-Feng, WEI Zhi-Yi. Long-Term Stabilization of Carrier-Envelope Phase for Few Cycles Ti:Sapphire Laser Amplifier[J]. Chin. Phys. Lett., 2014, 31(08): 047801
Full text