Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 047301    DOI: 10.1088/0256-307X/37/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$
Gang Shi1,2, Mingjie Zhang1,2, Dayu Yan1,2, Honglei Feng1,2, Meng Yang1,2, Youguo Shi1,2**, Yongqing Li1,2**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Gang Shi, Mingjie Zhang, Dayu Yan et al  2020 Chin. Phys. Lett. 37 047301
Download: PDF(682KB)   PDF(mobile)(664KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on low-temperature electron transport properties of MnSb$_{2}$Te$_{4}$, a candidate of ferrimagnetic Weyl semimetal. Long-range magnetic order is manifested as a nearly square-shaped hysteresis loop in the anomalous Hall resistance, as well as sharp jumps in the magnetoresistance. At temperatures below 4 K, a ${\rm ln}T$-type upturn appears in the temperature dependence of longitudinal resistance, which can be attributed to the electron-electron interaction (EEI), since the weak localization can be excluded by the temperature dependence of magnetoresistance. Although the anomalous Hall resistance exhibits a similar ${\rm ln}T$-type upturn in the same temperature range, such correction is absent in the anomalous Hall conductivity. Our work demonstrates that MnSb$_{2}$Te$_{4}$ microflakes provide an ideal system to test the theory of EEI correction to the anomalous Hall effect.
Received: 13 February 2020      Published: 24 March 2020
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11961141011 and 61425015, the National Key Research and Development Program under Grant No. 2016YFA0300600, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB28000000.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/047301       OR      http://cpl.iphy.ac.cn/Y2020/V37/I4/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gang Shi
Mingjie Zhang
Dayu Yan
Honglei Feng
Meng Yang
Youguo Shi
Yongqing Li
[1]Nagaosa N, Sinova J, Onoda S et al 2010 Rev. Mod. Phys. 82 1539
[2]Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[3]Chang C Z, Zhang J S, Feng X et al 2013 Science 340 167
[4]Weng H M, Fang C, Fang Z et al 2015 Phys. Rev. X 5 011029
[5]Liu E K, Sun Y, Kumar N et al 2018 Nat. Phys. 14 1125
[6]Langenfeld A and Wolfle P 1991 Phys. Rev. Lett. 67 739
[7]Muttalib K A and Wolfle P 2007 Phys. Rev. B 76 214415
[8]Mitra P, Mitra R, Hebard A F et al 2007 Phys. Rev. Lett. 99 046804
[9]Yang S, Li Z L, Lin C J et al 2019 Phys. Rev. Lett. 123 096601
[10]Bergmann G and Ye F 1991 Phys. Rev. Lett. 67 735
[11]Mitra P, Kumar N and Samarth N 2010 Phys. Rev. B 82 035205
[12]Lu Y M, Cai J W, Guo Z et al 2013 Phys. Rev. B 87 094405
[13]Ding J J, Wu S B, Yang X F et al 2015 Chin. Phys. B 24 027201
[14]Wu L, Zhu K, Yue D et al 2016 Phys. Rev. B 93 214418
[15]Li S C and Levchenko A 2019 arXiv:1910.09555
[16]Gong Y, Guo J, Li J et al 2019 Chin. Phys. Lett. 36 076801
[17]Otrokov M M, Rusinov I P, Blanco-Rey M et al 2019 Phys. Rev. Lett. 122 107202
[18]Li J H, Li Y, Du S Q et al 2019 Sci. Adv. 5 eaaw5685
[19]Zhang D Q, Shi M J, Zhu T S et al 2019 Phys. Rev. Lett. 122 206401
[20]Deng Y J, Yu Y J, Shi M Z et al 2020 Science 367 895
[21]Liu C, Wang Y C, Li H et al 2020 Nat. Mater. 19 (in press)
[22]Yan J Q, Zhang Q, Heitmann T et al 2019 Phys. Rev. Mater. 3 064202
[23]Murakami T, Nambu Y, Koretsune T et al et al 2019 Phys. Rev. B 100 195103
[24]Throughout this work, $R_{xx}$ refers to the sheet longitudinal resistance per square. The corresponding longitudinal resistivity is $\rho_{xx}$=$R_{xx}t$, where $t$ is the sample thickness
[25]Schiffer P, Ramirez A P, Bao W et al 1995 Phys. Rev. Lett. 75 3336
[26]Watts S M, Wirth S, von Molnár S et al 2000 Phys. Rev. B 61 9621
[27]Bergmann G 1984 Phys. Rep. 107 1
[28]Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[29]Dietl T and Hideo Ohno H 2014 Rev. Mod. Phys. 86 187
[30]Snyder G J, Hiskes R, DiCarolis S et al 1996 Phys. Rev. B 53 14434
[31]Dugaev V K, Crepieux A and Bruno P 2001 Phys. Rev. B 64 104411
[32]This approximation is valid because $R_{xx}$ is two orders of magnitude larger than $R_{\rm AH }$in MnSb$_{2}$Te$_{4}$. In this work, the AH conductivity $\sigma_{\mathrm{AH}}$ refers to the sheet conductance per square, and hence has a dimension of inverse resistance. It is convenient for discussing the physics at two dimensions.
[33]Altshuler B L and Aronov A G 1983 Solid State Commun. 46 429
Related articles from Frontiers Journals
[1] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 047301
[2] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 047301
[3] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 047301
[4] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 047301
[5] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 047301
[6] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 047301
[7] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 047301
[8] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 047301
[9] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 047301
[10] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 047301
[11] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 047301
[12] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 047301
[13] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 047301
[14] Rui-Fang Gao, Wen-Yong Su, Feng-Wang, Wan-Xiang Feng. Electron Transport Properties of Two-Dimensional Si$_{1}$P$_{1}$ Molecular Junctions[J]. Chin. Phys. Lett., 2017, 34(2): 047301
[15] Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(05): 047301
Viewed
Full text


Abstract