Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 046601    DOI: 10.1088/0256-307X/37/4/046601
Molecular Dynamics Simulation of Effects of Stretching and Compressing on Thermal Conductivity of Aligned Silicon Oxygen Chains
Wen-Xue Xu, Xin-Gang Liang**
School of Aerospace Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084
Cite this article:   
Wen-Xue Xu, Xin-Gang Liang 2020 Chin. Phys. Lett. 37 046601
Download: PDF(967KB)   PDF(mobile)(956KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of stretching and compressing on the thermal conductivity (TC) of silicon oxygen chain are studied by means of non-equilibrium molecular dynamics simulation. It is found that stretching can improve TC, and compressing may reduce the TC and can also increase the TC. This mechanism is explained based on the variation of phonon group velocity and the specific heat per volume with stretching and compressing. The distributions of bond angle and bond length under different normalized chain lengths are given. It is found that the bond length and bond angle in the skeleton chain would deviate from their original position. In addition, the phonon density of states (PDOSs) of silicon and oxygen atoms in the chains under different normalized chain lengths are analyzed. The overall trend is that the TC increases and the peaks of PDOSs move towards higher frequency with increasing stretch strain.
Received: 18 December 2019      Published: 24 March 2020
PACS: (Thermal diffusion and diffusive energy transport) (Polymers)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Fund: Supported by the National Science Fund for Creative Research Groups (Grant No. 51621062).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Wen-Xue Xu
Xin-Gang Liang
[1]Mao L, Zhao D, Zou X, Wang J H and Shi L Y 2017 Insul. Mater. 8 9 (in Chinese) %DOI:10.16790/
[2]Yang B C, Chen W Y, Zeng L and Hu Y D 2006 Annual Electronic Components Conference (Xining, China 15–19 August 2006) p 111 (in Chinese)
[3]Teng C C, Ma C C, Chiou K C and Lee T M 2012 Compos. Part B 43 265
[4]Wang J B, Bao Y B, Li Q Y and Wu C F 2012 Acta Mater. Composit. Sin. 29 6 (in Chinese)
[5]Lei H J, Wang M L and Gong W F 2006 Henan Chem. Industry 23 20 (in Chinese)
[6]Mu Q H, Feng S Y and Diao G Z 2007 Polym. Compos. 28 125
[7]Gao B Z, Xu J Z, Peng J J, Kang F Y, Du H D, Li J, Chiang S W, Xu C J, Hu N and Ning X S 2015 Thermochim. Acta 614 1
[8]Mou Q H, Feng W Y and Sun W Y 2008 China Patent No. 101284925A
[9]Chen F 2008 China Patent No. 101168620A
[10]Cao B Y, Kong J, Xu Y, Yung K L and Cai A 2013 Heat Transfer Eng. 34 131
[11]Henry A and Chen G 2008 Phys. Rev. Lett. 101 235502
[12]Xu Y F, Kraemer D, Song B, Jiang Z, Zhou J W, Loomis J, Wang J J, Li M D, Ghasemi H, Huang X P, Li X B and Chen G 2019 Nat. Commun. 10 1
[13]Gao Y F and Meng Q Y 2010 Acta Metall. Sin. 46 1244
[14]Lin Y P, Zhang M Y, Gao Y F, Mei L Y, Fu Y Z and Liu Y Q 2014 Acta Polym. Sin. 6 789
[15]Wu J W, Tao Y, Chen C, Chen Y W and Chen Y F 2018 Southeast Univ. (Engl. Ed.) 34 43
[16]Dong H K, Zhao D, Xu L, Li M B and Qi Y H 2018 J. Bohai Univ. 39 41 (in Chinese) %DOI:10.13831/j.cnki.issn.1673-0569.2018.03.007
[17]Zhang X L, Gong C Z and Wu G Q 2017 Rare Met. Mater. Eng. 46 370
[18]Tang K 2015 MS thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[19]Wen J H 2014 MS thesis (Xiangtan: Xiangtan University) (in Chinese)
[20]Gong T 2013 MS thesis (Xiangtan: Xiangtan University) (in Chinese)
[21]Yuan K P, Zhang X L, Li L and Tang D W 2019 Phys. Chem. Chem. Phys. 21 468
[22]Gao Y, Yang W and Xu B 2016 Carbon 96 513
[23]Feng X L, Li Z X and Guo Z Y 2001 J. Eng. Thermophys. 22 195
[24]Elena A A and Florian M P 2012 Soft Mater. 10 42
[25]Terao T, Lussetti E and Florian M P 2007 Phys. Rev. E 75 057701
[26]Ikeshoji T and Hafskjold B 1994 Mol. Phys. 81 251
[27]Wirnsberger P, Frenkel D and Dellago C 2015 J. Chem. Phys. 143 124104
[28]Mark J E 1999 Polymer Data Handbook (New York: Oxford University Press) pp 417–424
[29]Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906
[30]Mao J H 2014 MS thesis (Chongqing: Chongqing university) (in Chinese)
[31]Zhang M Y, Wang R H, Lin Y P, Li S M, Fu Y Z and Liu Y Q 2015 Polym. Mater. Sci. Eng. 31 68 (in Chinese) %DOI:10.16865/j.cnki.1000-7555.2015.04.014
[32]Luo T F, Esfarjani K, Shiomi J, Henry A and Chen G 2011 J. Appl. Phys. 109 074321
[33]Sun H 1995 Macromolecules 28 701
[34]Sun H and Rigby D 1997 Spectrochim. Acta Part A 53 1301
[35]Sun H, Jin Z, Yang C W, Akkermans R L C, Robertson S H, Spenley N A, Miller S and Todd S M 2016 J. Mol. Model. 22 47
[36]Grønbechjensen N, Hayre N R and Farago O 2014 Comput. Phys. Commun. 185 524
[37]Schneider T and Stoll E 1978 Phys. Rev. B 17 1302
[38]Fujino J I, Honda T and Yamashita H 1997 Heat. Transf-Jap Res. 26 435
[39]Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037
[40]Li J K and Tian X F 2010 Chin. Phys. Lett. 27 036501
[41]Fan Y and Dames C 2013 Phys. Rev. B 87 035437
[42]Kong L T 2011 Comput. Phys. Commun. 182 2201
[43]Kong L T, Bartels G, Campañá C, Denniston C and Müser M H 2009 Comput. Phys. Commun. 180 1004
[44]Wang S C, Liang X G, Xu X H and Ohara T 2009 J. Appl. Phys. 105 014316
Related articles from Frontiers Journals
[1] Wen-Chao Cui, Chuan-Xiao Peng, Yun Cheng, Kai-Kai Song, Xue-Lian Li, Zhen-Ting Zhang, Sheng-Zhong Yuan, Li Wang. Up-Hill Diffusion of Phase-Separated FeCu Melt by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2017, 34(2): 046601
[2] GAO Hong, , YU Qing-Quan. Heat Diffusion across a Strong Stochastic Magnetic Field in Tokamak Plasmas[J]. Chin. Phys. Lett., 2009, 26(6): 046601
Full text