Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 044202    DOI: 10.1088/0256-307X/37/4/044202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser
Jing-Jie Hao1,2,3, Wei Tu1,2**, Nan Zong1,2, Yu Shen1,2**, Shen-Jin Zhang1,2, Yong Bo1,2, Qin-Jun Peng1,2, Zu-Yan Xu1,2
1Key Lab of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
2Key Lab of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
3University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Jing-Jie Hao, Wei Tu, Nan Zong et al  2020 Chin. Phys. Lett. 37 044202
Download: PDF(601KB)   PDF(mobile)(598KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The multiwavelength characteristics of stimulated Raman scattering (SRS) in YVO$_{4}$ crystal excited by a picosecond laser at 1064 nm are investigated theoretically and experimentally. Laser output with seven wavelengths is achieved coaxially and synchronously at 894, 972, 1175, 1312, 1486, 1713 and 2022 nm in a YVO$_{4}$ crystal. The maximum total Raman output energy is as high as 2.77 mJ under the pump energy of 7.75 mJ. A maximum total Raman conversion efficiency of 47.8% is obtained when the pump energy is 6.54 mJ. This is the highest order of Stokes components and the highest output energy generated by YVO$_{4}$ reported up to date. This work expands the Raman spectrum of YVO$_{4}$ crystal to the near-IR regime, with seven wavelengths covered at the same time, paving the way for new wavelength generation in the near-IR regime and its multiwavelength application.
Received: 19 December 2019      Published: 24 March 2020
PACS:  42.55.Ye (Raman lasers)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Supported by the Key Laboratory Foundation from Technical Institute of Physics and Chemistry, Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/044202       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/044202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing-Jie Hao
Wei Tu
Nan Zong
Yu Shen
Shen-Jin Zhang
Yong Bo
Qin-Jun Peng
Zu-Yan Xu
[1]Zverev P G, Murray J T, Powell R C and Reeves R J 1993 Opt. Commun. 97 59
[2]Cerny P, Zverev P G, Jelinkova H and Basiev T T 2000 Opt. Commun. 177 397
[3]Kaminskii A A, Ueda K, Eichler H J, Kuwano Y et al 2001 Opt. Commun. 194 201
[4]Rubin J J and Van Uitert L G 1966 J. Appl. Phys. 37 2920
[5]Hu D W, Yu H H, Wang Z P, Zhang H J, Xu X G, Wang J Y and Shao Z S 2006 Acta Opt. Sin. 26 918 (in Chinese)
[6]Zong N, Zhang X F, Li C M, Cui D F, Xu Z Y, Zhang H J and Wang J Y 2008 Laser Phys. 18 1544
[7]Xu Y, Chen M, Li Z W, Bai Z X, Yang C, Chen L Y, Li G and Liu Y 2013 Chin. Phys. Lett. 30 084202
[8]Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Chen W D, Huang L X and Huang Y D 2011 Appl. Phys. B 103 559
[9]Chen W D, Wei Y, Huang C H, Wang X L, Shen H Y, Zhai S Y, Xu S, Li B X, Chen Z Q and Zhang G 2012 Opt. Lett. 37 1968
[10]Hu D W, Wang Z P, Zhang H J, Cheng X F, Yu H H, Xu X G, Wang J Y and Shao Z S 2009 Opt. Precis. Eng. 17 975 (in Chinese)
[11]Kaminskii A A, Eichler H J, Rhee H and Ueda K 2008 Laser Phys. Lett. 5 804
[12]Savitski V G, Reilly S and Kemp A J 2013 IEEE J. Quantum Electron. 49 218
[13]Basiev T T, Sobol A A, Zverev P G, Ivleva L I, Osiko V V and Powellet R C 1999 Opt. Mater. 11 307
[14]Černý P and Jelínková H 2002 Opt. Lett. 27 360
[15]Chiao R and Stoicheff B P 1964 Phys. Rev. Lett. 12 290
[16]Cheng P, Zhao J Q, Xu F, Zhou X F and Wang G D 2018 Appl. Phys. B 124 5
Related articles from Frontiers Journals
[1] Qing-Qing Zhou, Shen-Cheng Shi, Si-Meng Chen, Yan-Min Duan, Xi-Mei Zhang, Jing Guo, Bin Zhao, Hai-Yong Zhu. First-Stokes Wavelengths at 1175.8 and 1177.1nm Generated in a Diode End-Pumped Nd:YVO$_{4}$/LuVO$_{4}$ Raman Laser[J]. Chin. Phys. Lett., 2019, 36(1): 044202
[2] N. Hisamuddin, U. N. Zakaria, M. Z. Zulkifli, A. A. Latiff, H. Ahmad, S. W. Harun. Q-Switched Raman Fiber Laser with Molybdenum Disulfide-Based Passive Saturable Absorber[J]. Chin. Phys. Lett., 2016, 33(07): 044202
[3] LIU Yang, LIU Zhao-Jun, CONG Zhen-Hua, MEN Shao-Jie, XIA Jin-Bao, RAO Han, ZHANG Sa-Sa. Efficient Diode-End-Pumped Actively Q-Switched Nd:YLF/SrWO4 Raman Laser[J]. Chin. Phys. Lett., 2015, 32(12): 044202
[4] CAI Xiang-Long, ZHOU Can-Hua, ZHOU Dong-Jian, LIU Jin-Bo, GUO Jing-Wei, GUI Lin. H2 Stimulated Raman Scattering in a Multi-pass Cell with a Herriott Configuration[J]. Chin. Phys. Lett., 2015, 32(11): 044202
[5] CAI Wei-Yang, DUAN Yan-Min, LI Jiang-Tao, YAN Lin-Fei, MAO Meng-Jiao, ZHAO Bin, ZHU Hai-Yong. Diode-Pumped c-Cut Nd:Lu0.99La0.01VO4 Self-Stimulated Raman Laser at 1181 nm[J]. Chin. Phys. Lett., 2015, 32(03): 044202
[6] ZHANG Hua-Nian, CHEN Xiao-Han, WANG Qing-Pu, LI Ping. Efficient Diode-Pumped Actively Q-Switched Ceramic Nd:YAG/YVO4 Raman Laser Operating at 1657 nm[J]. Chin. Phys. Lett., 2015, 32(01): 044202
[7] XU Yang, CHEN Meng, LI Zheng-Wei, BAI Zhen-Xu, YANG Chao, CHEN Li-Yuan, LI Gang, LIU Yang. Raman Frequency Conversion of Picosecond Pulses in the YVO4 Crystal[J]. Chin. Phys. Lett., 2013, 30(8): 044202
[8] ZHANG Li-Sheng, FANG Yan, WANG Pei-Jie. Surface Enhanced Raman Scattering Characterization of the ZnO Films Modified with Silver Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(11): 044202
[9] ZHU Hai-Yong**, ZHANG Ge, DUAN Yan-Min, HUANG Cheng-Hui, WEI Yong . Compact Continuous-Wave Nd:YVO4 Laser with Self-Raman Conversion and Sum Frequency Generation[J]. Chin. Phys. Lett., 2011, 28(5): 044202
[10] M. Singh, P. Aghamkar, S. Duhan. Enhancement of Second- and Third-Order Nonlinear Optical Susceptibilities in Magnetized Semiconductors[J]. Chin. Phys. Lett., 2008, 25(9): 044202
[11] WANG Zheng-Ping, HU Da-Wei, FANG Xin, ZHANG Huai-Jin, XU Xin-Guang, WANG Ji-Yang, SHAO Zong-Shu. Eye-Safe Raman Laser at μm Based on BaWO4 Crystal[J]. Chin. Phys. Lett., 2008, 25(1): 044202
[12] M. Singh, P. Aghamkar, P. K. Sen. Stimulated Raman Scattering in a Weakly Polar III-V Semiconductor: Effect of dc Magnetic Field and Free Carrier Concentration[J]. Chin. Phys. Lett., 2007, 24(8): 044202
[13] WANG Hong-Bo, LIANG Hui-Min, WANG Zhi-Hua, LUO Shi-Rong, YANG Jing-Guo, ZHENG Wan-Guo, WEI Xiao-Feng, HE Shao-Bo, CHEN Yuan-Bin. High Efficient C6H12 Raman Laser Enhanced by DCM Fluorescence[J]. Chin. Phys. Lett., 2007, 24(1): 044202
[14] WANG Bao-Shan, PENG Ji-Ying, MIAO Jie-Guang, LI Yi-Min, HAO Er-Juan, ZHNG Zhe, GAO Lan-Lan, TAN Hui-Ming. Diode End-Pumped Passively Q-Switched Nd3+:GdVO4 Self-Raman Laser at 1176nm[J]. Chin. Phys. Lett., 2007, 24(1): 044202
[15] YAN Pei-Guang, RUAN Shuang-Chen, GUO Chun-Yu, YU Yong-Qin, SU Hong, LIU Cheng-Xiang. A Low-Pump-Threshold Photonic Crystal Fibre Raman Laser[J]. Chin. Phys. Lett., 2006, 23(11): 044202
Viewed
Full text


Abstract