Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 044201    DOI: 10.1088/0256-307X/37/4/044201
Scanning-Position Error-Correction Algorithm in Dual-Wavelength Ptychographic Microscopy
Rui Ma1,2, Shu-Yuan Zhang1, Tian-Hao Ruan1, Ye Tao1, Hua-Ying Wang3, Yi-Shi Shi1,2**
1School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049
2Center for Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
3College of Mathematics and Physics, Hebei University of Engineering, Handan 056038
Cite this article:   
Rui Ma, Shu-Yuan Zhang, Tian-Hao Ruan et al  2020 Chin. Phys. Lett. 37 044201
Download: PDF(3132KB)   PDF(mobile)(3135KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new algorithm for the error correction of scanning positions in ptychographic microscopy. Since the scanning positions are varied mechanically by moving the illuminating probes laterally, the scanning errors will accumulate at multiple positions, greatly reducing the reconstruction quality of a sample. To correct the scanning errors, we use the correlation analysis for the diffractive data combining with the additional constraint of dual wavelengths. This significantly improves the quality of ptychographic microscopy. Optical experiments verify the proposed algorithm for two samples including a resolution target and a fibroblast.
Received: 17 November 2019      Published: 24 March 2020
PACS:  42.30.Kq (Fourier optics)  
  42.30.Sy (Pattern recognition)  
  42.30.Va (Image forming and processing)  
Fund: Supported by the National Natural Science Foundation of China under Grant No. 61575197, the Fusion Foundation of Research and Education of CAS, the Youth Innovation Promotion Association of CAS (2017489), the University of Chinese Academy of Sciences, and the Natural Science Foundation of Hebei Province of China (F2018402285).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Rui Ma
Shu-Yuan Zhang
Tian-Hao Ruan
Ye Tao
Hua-Ying Wang
Yi-Shi Shi
[1]Hoppe W and Strube G 1969 Acta Crystallogr. Sect. A 25 502
[2]Faulkner H M L and Rodenburg J M 2004 Phys. Rev. Lett. 93 023903
[3]Rodenburg J M, Hurst A C and Cullis A G 2007 Ultramicroscopy 107 227
[4]Rodenburg J M 2008 Adv. Imaging Electron Phys. 150 87
[5]Maiden A M, Humphry M J and Sarahan M C 2012 Ultramicroscopy 120 64
[6]Zhang F, Peterson I and Vila-Comamala J 2013 Opt. Express 21 13592
[7]Tripathi A, McNulty I and Shpyrko O G 2014 Opt. Express 22 1452
[8]Claus D, Robinson D J and Chetwynd D G 2013 J. Opt. 15 035702
[9]Batey D J, Claus D and Rodenburg J M 2014 Ultramicroscopy 138 13
[10]Bao P, Zhang F and Pedrini G 2008 Opt. Lett. 33 309
[11]Bao P, Situ G and Pedrini G 2012 Appl. Opt. 51 5486
[12]Shi Y S, Wang Y L and Zhang S G 2013 Chin. Phys. Lett. 30 054203
[13]Wang D, Ma Y J and Liu Q 2015 Acta Phys. Sin. 64 084203 (in Chinese)
[14]Xiao J, Li D Y, Wang Y L and Shi Y S 2016 Acta Phys. Sin. 65 154203 (in Chinese)
[15]Shi Y S, Wang Y L and Li T 2013 Chin. Phys. Lett. 30 074203
[16]Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G and Li H F 2013 Opt. Lett. 38 1425
Related articles from Frontiers Journals
[1] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 044201
[2] Ju Cheng, Jian Lu, Hong-Chao Zhang, Feng Lei, Maryam Sardar, Xin-Tian Bian, Fen Zuo, Zhong-Hua Shen, Xiao-Wu Ni, Jin Shi. Combining Cubic Spline Interpolation and Fast Fourier Transform to Extend Measuring Range of Reflectometry[J]. Chin. Phys. Lett., 2018, 35(5): 044201
[3] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 044201
[4] Tuo Li, Yi-Shi Shi. Phase-Shifting-Free Interferometric Cryptosystem[J]. Chin. Phys. Lett., 2017, 34(3): 044201
[5] Zong-Liang Xie, Bo Qi, Hao-Tong Ma, Ge Ren, Yu-Feng Tan, Bi He, Heng-Liang Zeng, Chuan Jiang. Optical Transfer Function Reconstruction in Incoherent Fourier Ptychography[J]. Chin. Phys. Lett., 2016, 33(04): 044201
[6] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 044201
[7] XIE Zong-Liang, MA Hao-Tong, QI Bo, REN Ge, TAN Yu-Feng, HE Bi, ZENG Heng-Liang, JIANG Chuan. Aperture-Scanning Fourier Ptychographic Encoding with Phase Modulation[J]. Chin. Phys. Lett., 2015, 32(12): 044201
[8] YANG Zu-Hua, ZHAO Zong-Qing, WEI Lai, ZHANG Qiang-Qiang, QIAN Feng, GU Yu-Qiu, CAO Lei-Feng. Design of Elliptical Reflection Zone Plate for Monochromatization of the Ultrafast Betatron Radiation at Low Energy Band[J]. Chin. Phys. Lett., 2014, 31(05): 044201
[9] SHI Yi-Shi , WANG Ya-Li, LI Tuo, GAO Qian-Kun, WAN Hao, ZHANG San-Guo, WU Zhi-Bo . Ptychographical Imaging Algorithm with a Single Random Phase Encoding[J]. Chin. Phys. Lett., 2013, 30(7): 044201
[10] SHI Yi-Shi, WANG Ya-Li, ZHANG San-Guo. Generalized Ptychography with Diverse Probes[J]. Chin. Phys. Lett., 2013, 30(5): 044201
[11] CHEN Lin-Fei, ZHAO Dao-Mu, MAO Hai-Dan, GE Fan, GUAN Rui-Xia. The Collins Formula Applied in Optical Image Encryption[J]. Chin. Phys. Lett., 2013, 30(4): 044201
[12] PAN Xing-Chen, LIN Qiang, LIU Cheng, and ZHU Jian-Qiang. A Lens Assisted Phase Microscope Based on Ptychography[J]. Chin. Phys. Lett., 2012, 29(8): 044201
[13] LIN Jie, **, CHENG Jing . Lensless Ghost Diffraction with Partially Coherent Sources: Effects of the Source Size, Transverse Coherence, Detector Size and Defocusing Length[J]. Chin. Phys. Lett., 2011, 28(9): 044201
[14] ZHOU Pu, MA Yan-Xing, WANG Xiao-Lin, MA Hao-Tong, XU Xiao-Jun, LIU Ze-Jin. Efficient Phase Locking of Fiber Amplifiers Using a Low-Cost and High-Damage-Threshold Phase Control System[J]. Chin. Phys. Lett., 2010, 27(3): 044201
[15] ZHOU Pu, WANG Xiao-Lin, MA Yan-Xing, MA Hao-Tong, XU Xiao-Jun, LIU Ze-Jin. Coherent Beam Combination of Eight Watt-Level Polarization-Maintained Fiber Amplifiers[J]. Chin. Phys. Lett., 2010, 27(3): 044201
Full text