Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 043101    DOI: 10.1088/0256-307X/37/4/043101
Discriminating High-Pressure Water Phases Using Rare-Event Determined Ionic Dynamical Properties
Lin Zhuang1,2, Qijun Ye1,2**, Ding Pan3,4, Xin-Zheng Li1,2,5**
1Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871
2State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871
3Department of Physics and Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong
4HKUST Fok Ying Tung Research Institute, Guangzhou 511458
5Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871
Cite this article:   
Lin Zhuang, Qijun Ye, Ding Pan et al  2020 Chin. Phys. Lett. 37 043101
Download: PDF(20890KB)   PDF(mobile)(21337KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent discoveries of dynamic ice VII and superionic ice highlight the importance of ionic diffusions in discriminating high-pressure ($P$) water phases. The rare event nature and the chemical bond breaking associated with these diffusions, however, make extensive simulations of these processes unpractical to ab initio and inappropriate for force field based methods. Using a first-principles neural network potential, we performed a theoretical study of water at 5–70 GPa and 300–3000 K. Long-time dynamics of protons and oxygens were found indispensable in discriminating several subtle states of water, characterized by proton's and oxygen ion's diffusion coefficients and the distribution of proton's displacements. Within dynamic ice VII, two types of proton transfer mechanisms, i.e., translational and rotational transfers, were identified to discriminate this region further into dynamic ice VII T and dynamic ice VII R. The triple point between ice VII, superionic ice (SI), and liquid exists because the loosening of the bcc oxygen skeleton is prevented by the decrease of interatomic distances at high $P$'s. The melting of ice VII above $\sim$40 GPa can be understood as a process of two individual steps: the melting of protons and the retarded melting of oxygens, responsible for the forming of SI. The boundary of the dynamic ice VII and SI lies on the continuation line ice VII's melting curve at low $P$'s. Based on these, a detailed phase diagram is given, which may shed light on studies of water under $P$'s in a wide range of interdisciplinary sciences.
Received: 07 March 2020      Published: 25 March 2020
PACS:  31.15.xv (Molecular dynamics and other numerical methods) (Proton diffusion)  
  81.30.Dz (Phase diagrams of other materials)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Supported by the National Basic Research Program of China under Grant Nos. 2016YFA0300900 and 2017YFA0205003, the National Science Foundation of China under Grant Nos. 11774003, 11634001, 11934003, and 11774072. D. Pan also acknowledges the support from Hong Kong Research Grands Council (Nos. ECS-26305017 and GRF-16307618), the Alfred R. Sloan Foundation through the Deep Carbon Observatory (DCO), and the Croucher Foundation through the Croucher Innovation Award.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Lin Zhuang
Qijun Ye
Ding Pan
Xin-Zheng Li
[1]Whitworth R and Petrenko V 1999 Physics of Ice (Oxford: Oxford University Press)
[2]Benoit M, Bernasconi M, Focher P and Parrinello M 1996 Phys. Rev. Lett. 76 2934
[3]Aoki K, Yamawaki H, Sakashita M and Fujihisa H 1996 Phys. Rev. B 54 15673
[4]Hagen W, Tielens A and Greenberg J M 1981 Chem. Phys. 56 367
[5]Benoit M, Marx D and Parrinello M 1998 Nature 392 258
[6]Salzmann C G, Radaelli P G, Mayer E and Finney J L 2009 Phys. Rev. Lett. 103 105701
[7]Militzer B and Wilson H F 2010 Phys. Rev. Lett. 105 195701
[8]Wang Y, Liu H, Lv J, Zhu L, Wang H and Ma Y 2011 Nat. Commun. 2 563
[9]Sun J, Clark B K, Torquato S and Car R 2015 Nat. Commun. 6 8156
[10]Rozsa V, Pan D, Giberti F and Galli G 2018 Proc. Natl. Acad. Sci. USA 115 6952
[11]Hernandez J A and Caracas R 2016 Phys. Rev. Lett. 117 135503
[12]Bertie J E and Whalley E 1967 J. Chem. Phys. 46 1271
[13]Bertie J E, Labbé H J and Whalley E 1969 J. Chem. Phys. 50 4501
[14]Isaacs E D, Shukla A, Platzman P M, Hamann D R, Barbiellini B and Tulk C A 1999 Phys. Rev. Lett. 82 600
[15]Howe R and Whitworth R W 1989 J. Chem. Phys. 90 4450
[16]Caracas R 2008 Phys. Rev. Lett. 101 085502
[17]Bina C R and Navrotsky A 2000 Nature 408 844
[18]Kupenko I, Aprilis G, Vasiukov D M, McCammon C, Chariton S, Cerantola V, Kantor I, Chumakov A I, Rüffer R, Dubrovinsky L and Sanchez-Valle C 2019 Nature 570 102
[19]Wilson H F, Wong M L and Militzer B 2013 Phys. Rev. Lett. 110 151102
[20]Nellis W J 2015 Mod. Phys. Lett. B 29 1430018
[21]Schweizer K S and Stillinger F H 1984 J. Chem. Phys. 80 1230
[22]Kuo J L and Klein M L 2004 J. Phys. Chem. B 108 19634
[23]Pauling L 1935 J. Am. Chem. Soc. 57 2680
[24]Benoit M, Romero A H and Marx D 2002 Phys. Rev. Lett. 89 145501
[25]Schwegler E, Sharma M, Gygi F and Galli G 2008 Proc. Natl. Acad. Sci. USA 105 14779
[26]Water phase diagram (2019) accessed 14 November 2019
[27]Goncharov A F, Goldman N, Fried L E, Crowhurst J C, Kuo I F W, Mundy C J and Zaug J M 2005 Phys. Rev. Lett. 94 125508
[28]French M, Mattsson T R and Redmer R 2010 Phys. Rev. B 82 174108
[29]French M, Hamel S and Redmer R 2011 Phys. Rev. Lett. 107 185901
[30]Cavazzoni C, Chiarotti G L, Scandolo S, Tosatti E, Bernasconi M and Parrinello M 1999 Science 283 44
[31]Lin J F, Militzer B, Struzhkin V V, Gregoryanz E, Hemley R J and Mao H K 2004 J. Chem. Phys. 121 8423
[32]Lin J F 2005 Geophys. Res. Lett. 32 L11306
[33]Schwager B, Chudinovskikh L, Gavriliuk A and Boehler R 2004 J. Phys.: Condens. Matter 16 S1177
[34]Datchi F, Loubeyre P and LeToullec R 2000 Phys. Rev. B 61 6535
[35]Ohtani E 2007 Advances in High-Pressure Mineralogy (Boulder: Geological Society of America)
[36]Putrino A and Parrinello M 2002 Phys. Rev. Lett. 88 176401
[37]Redmer R, Mattsson T R, Nettelmann N and French M 2011 Icarus 211 798
[38]Zhang L, Han J, Wang H, Car R and W E 2018 Phys. Rev. Lett. 120 143001
[39]Zhang L, Wang H and W E 2018 J. Chem. Phys. 148 124113
[40]Behler J 2016 J. Chem. Phys. 145 170901
[41]Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[42]Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[43]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[45]Plimpton S 1995 J. Comput. Phys. 117 1
[46]Merolle M, Garrahan J P and Chandler D 2005 Proc. Natl. Acad. Sci. USA 102 10837
[47]Friedman A J, Chan A, De Luca A and Chalker J T 2019 Phys. Rev. Lett. 123 210603
[48]Kozin V K and Kyriienko O 2019 Phys. Rev. Lett. 123 210602
[49]Chen J, Li X Z, Zhang Q, Probert M I J, Pickard C J, Needs R J, Michaelides A and Wang E 2013 Nat. Commun. 4 2064
[50]Boyer L L 1985 Phase Transit. 5 1
[51]Ciccotti G, Jacucci G and McDonald I R 1976 Phys. Rev. A 13 426
[52]Trullas J and Giro A 1990 J. Phys.: Condens. Matter 2 6643
[53]Tasseven Ç, Trullàs J, Alcaraz O, Silbert M and Giró A 1997 J. Chem. Phys. 106 7286
[54]Giguere P A 1979 J. Chem. Educ. 56 571
[55]Chau R, Mitchell A C, Minich R W and Nellis W J 2001 J. Chem. Phys. 114 1361
[56]Holmes N C, Nellis W J, Graham W B and Walrafen G E 1985 Phys. Rev. Lett. 55 2433
[57]Goldman N, Reed E J, Kuo I F W, Fried L E, Mundy C J and Curioni A 2009 J. Chem. Phys. 130 124517
[58]Yakushev V V, Postnov V I, Fortov V E and Yakysheva T I 2010 J. Exp. Theor. Phys. 90 617
[59]Hull S 2004 Rep. Prog. Phys. 67 1233
[60]Millot M, Hamel S, Rygg J R, Celliers P M, Collins G W, Coppari F, Fratanduono D E, Jeanloz R, Swift D C and Eggert J H 2018 Nat. Phys. 14 297
[61]Boyce J and Huberman B 1979 Phys. Rep. 51 189
Related articles from Frontiers Journals
[1] Oğuz Gürbulak, Emine Cebe. Molecular Dynamics Simulation of 4-N-Hexyl-4'-Cyanobiphenyl Adsorbed at the Air-Water Interface[J]. Chin. Phys. Lett., 2018, 35(4): 043101
[2] Zi-Qian Huang, Rong-Yao Yang, Wei-Zhou Jiang, Qi-Lin Zhang. Heating of Nanosized Liquid Water in High-Intensity Terahertz Pulses[J]. Chin. Phys. Lett., 2016, 33(01): 043101
[3] MA Wang-Guo, ZHANG Meng, NIE Xue-Chuan, WANG Chun-Lei, FANG Hai-Ping, HE Meng-Dong, ZHANG Li-Juan. Controllable Nucleation of Nanobubbles at a Modified Graphene Surface[J]. Chin. Phys. Lett., 2015, 32(4): 043101
[4] LI Ya-Min, CHE Ru-Xin, LI Ying, DONG Bin. Theoretical Study of the H+ClO Reaction[J]. Chin. Phys. Lett., 2013, 30(11): 043101
[5] ZHANG Cai-Ping, MIAO Xiang-Yang. Role of the Permanent Dipole Moment in Coulomb Explosion[J]. Chin. Phys. Lett., 2013, 30(10): 043101
[6] WU Tian-Yu, PENG Meng-Meng, LUO Xiao-Feng, LAI Wen-Sheng. Influence of Temperature and Stress on Near-Surface Cascades in Alpha-Zirconium Revealed by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2013, 30(9): 043101
[7] ZHANG Yue-Xia, LIU Qiang, SHI Ting-Yun. The Hydrogen Molecular Ion in Strong Fields Using the B-Spline Method[J]. Chin. Phys. Lett., 2013, 30(4): 043101
[8] XI Wen-Hui, LI Wen-Fei, and WANG Wei. Modulation of Amyloid-β Conformation by Charge State of N-Terminal Disordered Region[J]. Chin. Phys. Lett., 2012, 29(8): 043101
[9] ZHAO Li, SUN Ping, LIU Chao-Zhuo* . Quasi-Classical Trajectory Calculations of Reaction Stereodynamics of H+OH( v = 0, j = 0)H2+O(3 P )[J]. Chin. Phys. Lett., 2011, 28(8): 043101
[10] WANG Tao, YUE Xian-Fang . QCT Calculations of Reactions of F+LiHLiF+H and F+LiDLiF+D: Product Polarization and Isotope Effects[J]. Chin. Phys. Lett., 2011, 28(2): 043101
[11] XIAO Jing, YANG Chuan-Lu**, WANG Mei-Shan, MA Xiao-Guang . Collision Energies Effect on Stereodynamics for Ne+H2+→NeH++H Reaction[J]. Chin. Phys. Lett., 2011, 28(1): 043101
[12] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 043101
[13] ZHANG Yue-Xia, KANG Shuai, SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(11): 043101
Full text