Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 040501    DOI: 10.1088/0256-307X/37/4/040501
Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction
Yu-Han Wu1,2,3, Chong Liu1,2,3**, Zhan-Ying Yang1,2,3, Wen-Li Yang1,2,3,4
1School of Physics, Northwest University, Xi'an 710127
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127
3NSFC-SPTP Peng Huanwu Center for Fundamental Theory, Xi'an 710127
4Institute of Modern Physics, Northwest University, Xi'an 710127
Cite this article:   
Yu-Han Wu, Chong Liu, Zhan-Ying Yang et al  2020 Chin. Phys. Lett. 37 040501
Download: PDF(794KB)   PDF(mobile)(781KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the properties of breather interactions in nonlinear Kerr media with self-steepening and space-time correction and with either self-focusing or self-defocusing nonlinearity, and present a new family of exact breather solutions via the Darboux transformation with a special-designed quadratic spectral parameter. In contrast to the previous results of the nonlinear Schrödinger equation (NLSE) hierarchy, we show that the relative phase of colliding breathers has a significant effect on the collision manifestation. In particular, only the out-of-phase interactions can generate small amplitude waves at the collision center, which are analogous to the NLSE super-regular breathers. Our results will deepen our understanding of the properties of breather interactions and they will offer the possibility of experimental observations of super-regular breather dynamics in systems with self-steepening and space-time correction.
Received: 09 January 2020      Published: 24 March 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11705145, 11947301, 11434013, and 11425522), the Major Basic Research Program of Natural Science of Shaanxi Province (Grant Nos. 2017KCT-12 and 2017ZDJC-32), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JQ1003).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yu-Han Wu
Chong Liu
Zhan-Ying Yang
Wen-Li Yang
[1]Dudley J M et al 2019 Int. Rev. Phys. Chem. 1 675
[2]Wabnitz S 2017 Nonlinear Guided Wave Optics: A Testbed for Extreme Waves (Bristol: IOP Publishing)
[3]Onorato M, Resitori S and Baronio F 2016 Rogue and Shock Waves in Nonlinear Dispersive Media (Berlin: Springer)
[4]Dudley J M et al 2014 Nat. Photon. 8 755
[5]Akhmediev N et al 2016 J. Opt. 18 063001
[6]Akhmediev N et al 2009 Phys. Lett. A 373 2137
[7]Akhmediev N et al 2009 Phys. Lett. A 373 675
[8]Akhmediev N et al 2009 Phys. Rev. A 80 043818
[9]Kibler B et al 2010 Nat. Phys. 6 790
[10]Frisquet B et al 2013 Phys. Rev. X 3 041032
[11]Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[12]Zakharov V E and Gelash A A 2013 Phys. Rev. Lett. 111 054101
[13]Gelash A A and Zakharov V E 2014 Nonlinearity 27 R1
[14]Soto-Crespo J M et al 2016 Phys. Rev. Lett. 116 103901
[15]Zakharov V E et al 2009 Stud. Appl. Math. 122 219
[16]Kibler B et al 2015 Phys. Rev. X 5 041026
[17]Xu G et al 2019 Phys. Rev. Lett. 122 084101
[18]Jia H, Li B, Yang R and Tian J 2020 Nonlinear Dyn (in press)
[19]Akhmediev N et al 1985 Sov. Phys.-JETP 62 894
[20]Liu C et al 2019 J. Opt. Soc. Am. B 36 1294
[21]Akhmediev N and Ankiewicz A 1997 Solitons: Nolinear Pulses and Beams (Chapman and Hall, London)
[22]Gelash A A 2018 Phys. Rev. E 97 022208
[23]Trillo S and Conforti M 2019 Opt. Lett. 44 4275
[24]Conforti M et al 2018 Opt. Lett. 43 5291
[25]Zhang J H et al 2017 Proc. R. Soc. A 473 20160681
[26]Liu C et al 2017 Chaos 27 083120
[27]Liu C et al 2018 Chaos 28 083110
[28]Liu C and Akhmediev N 2019 Phys. Rev. E 100 062201
[29]Ren Y et al 2018 Phys. Rev. E 98 062223
[30]Ren Y et al 2018 Commun. Nonlinear Sci. & Numer. Simul. 63 161
[31]Nakamura A and Chen H H 1980 J. Phys. Soc. Jpn. 49 813
[32]Kakei S et al 1995 J. Phys. Soc. Jpn. 64 1519
[33]Kaup D J and Newell A C 1978 J. Math. Phys. 19 798
[34]DeMartini F et al 1967 Phys. Rev. 164 312
[35]Grischkowsky D et al 1973 Phys. Rev. Lett. 31 422
[36]Moses J and Wise F W 2006 Phys. Rev. Lett. 97 073903
[37]Moses J et al 2007 Phys. Rev. A 76 021802(R)
[38]Kedziora D J et al 2015 Chaos 25 103114
[39]Wadati M et al 1979 J. Phys. Soc. Jpn. 46 1965
[40]Fokas A S 1995 Physica D 87 145
[41]Lenells J 2009 Stud. Appl. Math. 123 215
[42]Lenells J and Fokas A S 2009 Nonlinearity 22 11
[43]Wadati M and Sogo K 1983 J. Phys. Soc. Jpn. 52 394
[44]Chen S H and Song L Y 2014 Phys. Lett. A 378 1228
[45]He J S et al 2012 Phys. Soc. Jpn. 81 124007
[46]Xu S W et al 2015 Math. Methods Appl. Sci. 38 1106
[47]Wang L et al 2015 Chaos 25 063111
[48]Faddeev L D and Takhtajan L A 2007 (Heidelberg: Springer)
[49](a) Kuznetsov E A 1977 Sov. Phys. Dokl. 22 575
[50]Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[51]He J S et al 2016 Phys. Rev. E 93 062201
[52]He J S et al 2017 Rom. J. Phys. 62 203
[53]Liu C et al 2014 Phys. Rev. A 89 055803
[54]Liu C et al 2016 Phys. Rev. E 94 042221
Related articles from Frontiers Journals
[1] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 040501
[2] Ying Yang, Ze-Hua Tian, Ji-Liang Jing. Analogue Soliton with Variable Mass in Super-Conducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2020, 37(4): 040501
[3] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 040501
[4] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrödinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 040501
[5] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 040501
[6] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 040501
[7] Xin Li, Wen-Hao Xu, Dong-Ming Chen, Li-Ke Cao, Zhan-Ying Yang. Formation of Square-Shaped Waves in the Biscay Bay[J]. Chin. Phys. Lett., 2019, 36(9): 040501
[8] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 040501
[9] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 040501
[10] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schrödinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 040501
[11] Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schrödinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 040501
[12] Jun Yang, Zuo-Nong Zhu. Higher-Order Rogue Wave Solutions to a Spatial Discrete Hirota Equation[J]. Chin. Phys. Lett., 2018, 35(9): 040501
[13] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 040501
[14] Xiang-Shu Liu, Yang Ren, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Nonlinear Excitation and State Transition of Multi-Peak Solitons[J]. Chin. Phys. Lett., 2018, 35(7): 040501
[15] Senyue Lou, Ji Lin. Rogue Waves in Nonintegrable KdV-Type Systems[J]. Chin. Phys. Lett., 2018, 35(5): 040501
Full text