Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 038504    DOI: 10.1088/0256-307X/37/3/038504
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes
He-Nan Fang1**, Yuan-Yuan Zhong1, Ming-Wen Xiao2, Xuan Zang1, Zhi-Kuo Tao1
1College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023
2Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao et al  2020 Chin. Phys. Lett. 37 038504
Download: PDF(854KB)   PDF(mobile)(847KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A spintronic theory is developed to study the effect of lattice distortion on the magnetic tunnel junctions (MTJs) consisting of single-crystal barrier and half-metallic electrodes. In the theory, the lattice distortion is described by strain, defect concentration and recovery temperature. All three parameters will modify the periodic scattering potential, and further alter the tunneling magnetoresistance (TMR). The theoretical results show that: (1) the TMR oscillates with all the three parameters; (2) the strain can change the TMR about 30%; (3) the defect concentration will strongly modify the periodic scattering potential, and further change the TMR about 50%; and (4) the recovery temperature has little effect on the periodic scattering potential, and only can change the TMR about 10%. The present work may provide a theoretical foundation to the application of lattice distortion for MTJs consisting of single-crystal barrier and half-metallic electrodes.
Received: 08 October 2019      Published: 22 February 2020
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.40.Gk (Tunneling)  
  72.25.-b (Spin polarized transport)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11704197 and 61574079, and the NUPTSF under Grant No. NY217046.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/038504       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/038504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
He-Nan Fang
Yuan-Yuan Zhong
Ming-Wen Xiao
Xuan Zang
Zhi-Kuo Tao
[1]Han X F, Oogane M, Kubota H et al 2000 Appl. Phys. Lett. 77 283
[2]Parkin S S P, Kaiser C, Panchula A et al 2004 Nat. Mater. 3 862
[3]Yuasa S, Nagahama T, Fukushima A et al 2004 Nat. Mater. 3 868
[4]Drewello V, Schmalhorst J, Thomas A et al 2008 Phys. Rev. B 77 014440
[5]Fuchs G D, Katine J A, Kiselev S I et al 2006 Phys. Rev. Lett. 96 186603
[6]Kubota H, Fukushima A, Yakushiji K et al 2008 Nat. Phys. 4 37
[7]Deac A M, Fukushima A, Kubota H et al 2008 Nat. Phys. 4 803
[8]Jia X T, Xia K and Bauer G E W 2011 Phys. Rev. Lett. 107 176603
[9]Fabian J, Matos-Abiaguea A, Ertlera C et al 2007 Acta Phys. Slovaca 57 565
[10]Han X F, Ali S S and Liang S H 2013 Sci. Chin. Phys. Mech. 56 29
[11]Ishikawa T, Hakamata S, Matsuda K et al 2008 J. Appl. Phys. 103 07A919
[12]Hu B, Moges K, Honda Y et al 2016 Phys. Rev. B 94 094428
[13]Liu H, Kawami T, Moges K et al 2015 J. Phys. D 48 164001
[14]Marukame T, Ishikawa T, Taira T et al 2010 Phys. Rev. B 81 134432
[15]Zhang J, Phung T, Pushp A et al 2017 Appl. Phys. Lett. 110 172403
[16]McFadden A, Wilson N, Brown-Heft et al 2017 J. Magn. Magn. Mater. 444 383
[17]McFadden A, Brown-Heft, Pennachio D et al 2017 J. Appl. Phys. 122 113902
[18]Inoue M, Hu B, Moges K et al 2017 Appl. Phys. Lett. 111 082403
[19]Fang H N, Xiao M W, Rui W B et al 2018 J. Magn. Magn. Mater. 465 333
[20]Fang H N, Xiao M W, Rui W B et al 2016 Sci. Rep. 6 24300
[21]Cowley J M 1995 Diffraction Physics (Amsterdam: Elsevier)
[22]Fang H N, Xiao M W, Rui W B et al 2019 New J. Phys. 21 123006
Related articles from Frontiers Journals
[1] Zhaonian Jin, Minhang Song, Henan Fang, Lin Chen, Jiangwei Chen, and Zhikuo Tao. Characteristics and Applications of Current-Driven Magnetic Skyrmion Strings[J]. Chin. Phys. Lett., 2022, 39(10): 038504
[2] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 038504
[3] Xiufeng Han, Yu Zhang, Yizhan Wang, Li Huang, Qinli Ma, Houfang Liu, Caihua Wan, Jiafeng Feng, Lin Yin, Guoqiang Yu, Tian Yu, and Yu Yan. High-Sensitivity Tunnel Magnetoresistance Sensors Based on Double Indirect and Direct Exchange Coupling Effect[J]. Chin. Phys. Lett., 2021, 38(12): 038504
[4] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 038504
[5] Yu Suo, Hao Yang, and Jiyong Fu. Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping[J]. Chin. Phys. Lett., 2020, 37(11): 038504
[6] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 038504
[7] Ya-Bo Chen, Xiao-Kuo Yang, Tao Yan, Bo Wei, Huan-Qing Cui, Cheng Li, Jia-Hao Liu, Ming-Xu Song, and Li Cai. Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing[J]. Chin. Phys. Lett., 2020, 37(7): 038504
[8] Si-Wei Mao, Jun Lu, Long Yang, Xue-Zhong Ruan, Hai-Long Wang, Da-Hai Wei, Yong-Bing Xu, Jian-Hua Zhao. Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers[J]. Chin. Phys. Lett., 2020, 37(5): 038504
[9] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 038504
[10] Zheng-Wei Xie, Ling Li. Spin-Polarization in Quasi-Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2017, 34(5): 038504
[11] Yuan-Yuan Guo, Fei-Fei Zhao, Hai-Bin Xue, Zhe-Jie Liu. Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer[J]. Chin. Phys. Lett., 2016, 33(03): 038504
[12] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 038504
[13] REN Jun-Feng, YUAN Xiao-Bo, HU Gui-Chao. Spin Polarization Properties of Na Doped Meridianal Tris(8-Hydroxyquinoline) Aluminum Studied by First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(04): 038504
[14] XIA Yu-Qian, SUN Lei, XU Hao, HAN Jing-Wen, ZHANG Yi-Bo, WANG Yi, ZHANG Sheng-Dong. Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(2): 038504
[15] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 038504
Viewed
Full text


Abstract