Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 038102    DOI: 10.1088/0256-307X/37/3/038102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer
Shen Yan1,2, Xiao-Tao Hu1,2, Jun-Hui Die1,2, Cai-Wei Wang1,2, Wei Hu1,2, Wen-Liang Wang3, Zi-Guang Ma1,2, Zhen Deng1,2,4, Chun-Hua Du1,2,4, Lu Wang1,2, Hai-Qiang Jia1,2,5, Wen-Xin Wang1,2,5, Yang Jiang1,2**, Guoqiang Li3**, Hong Chen1,2,5
1Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
3State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640
4The Yangtze River Delta Physics Research Center, Liyang 213000
5Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Shen Yan, Xiao-Tao Hu, Jun-Hui Die et al  2020 Chin. Phys. Lett. 37 038102
Download: PDF(5408KB)   PDF(mobile)(5402KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate that a low-temperature GaN insertion layer could significantly improve the surface morphology of non-polar a-plane GaN.The two key factors in improving the surface morphology of non-polar a-plane GaN are growth temperature and growth time of the GaN insertion layer. The root-mean-square roughness of a-plane GaN is reduced by 75% compared to the sample without the GaN insertion layer. Meanwhile, the GaN insertion layer is also beneficial for improving crystal quality. This work provides a simple and effective method to improve the surface morphology of non-polar a-plane GaN.
Received: 11 November 2019      Published: 22 February 2020
PACS:  81.05.Ea (III-V semiconductors)  
  81.10.St (Growth in controlled gaseous atmospheres)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11574362 and 61704008).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/038102       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/038102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shen Yan
Xiao-Tao Hu
Jun-Hui Die
Cai-Wei Wang
Wei Hu
Wen-Liang Wang
Zi-Guang Ma
Zhen Deng
Chun-Hua Du
Lu Wang
Hai-Qiang Jia
Wen-Xin Wang
Yang Jiang
Guoqiang Li
Hong Chen
[1]Moustakas T D and Paiella R 2017 Rep. Prog. Phys. 80 106501
[2]Zeng F, An J X, Zhou G, Li W, Wang H, Duan T, Jiang L and Yu H 2018 Electronics 7 377
[3]Schmidt M C, Kim K C , Sato H, Fellows N, Masui H, Nakamura S, DenBaars S P and Speck J S 2007 Jpn. J. Appl. Phys. II 46 L126
[4]Wetzel C, Zhu M, Senawiratne J, Detchprohm T, Persans P D, Liu L, Preble E A and Hanser D 2008 J. Cryst. Growth 310 3987
[5]Masui H, Nakamura S, DenBaars S P and Mishra U K 2010 IEEE Trans. Electron Devices 57 88
[6]Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 469
[7]Bai J, Jiu L, Gong Y and Wang T 2018 Semicond. Sci. Technol. 33 125023
[8]Jiu L, Gong Y and Wang T 2018 Sci. Rep. 8 9898
[9]Wang H M, Chen C Q, Gong Z, Zhang J P, Gaevski M, Su M, Yang J W and Khan M A 2004 Appl. Phys. Lett. 84 499
[10]Lee Y S, Kim H, Seo T H, Park A H, Lee S B, Chung S J, Choi C J and Suh E K 2013 Electron. Mater. Lett. 9 587
[11]Son J S, Honda Y, Yamaguchi M, Amano H, Baik K H, Seo Y G and Hwang S M 2013 Thin Solid Films 546 108
[12]Die J H, Wang C W, Yan S, Hu X T, Hu W, Ma Z G, Deng Z, Du C H, Wang L, Jia H Q, Wang W X, Jiang Y and Chen H 2019 Appl. Phys. Express 12 015503
[13]Wang C W, Jiang Y, Die J H, Yan S, Hu X T, Hu W, Ma Z G, Deng Z, Jia H Q and Chen H 2019 CrystEngComm 21 2747
[14]Chakraborty A, Kim K C, Wu F, Speck J S, DenBaars S P and Mishra U K 2006 Appl. Phys. Lett. 89 041903
[15]Xu S R, Zhang J C, Yang L A, Zhou X W, Cao Y R, Zhang J F, Xue J S, Liu Z Y, Ma J C, Bao F and Hao Y 2011 J. Cryst. Growth 327 94
[16]Chen C Q, Yang J W, Wang H M, Zhang J P, Adivarahan V, Gaevski M, Kuokstis E, Gong Z, Su M and Khan M A 2003 Jpn. J. Appl. Phys. 42 L640
[17]Araki M, Mochimizo N, Hoshino K and Tadatomo K 2007 Jpn. J. Appl. Phys. I 46 555
[18]Johnston C F, Kappers M J and Humphreys C J 2009 J. Appl. Phys. 105 073102
[19]Sun Q, Kong B H, Yerino C D, Ko T S , Leung B, Cho H K and Han J 2009 J. Appl. Phys. 106 123519
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 038102
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 038102
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 038102
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 038102
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 038102
[6] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 038102
[7] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 038102
[8] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 038102
[9] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 038102
[10] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 038102
[11] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 038102
[12] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 038102
[13] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 038102
[14] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 038102
[15] Yang Ren, Rui-Ting Hao, Si-Jia Liu, Jie Guo, Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu. High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 038102
Viewed
Full text


Abstract