Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 037101    DOI: 10.1088/0256-307X/37/3/037101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Bright-Dark Mode Coupling Model of Plasmons
Jing Zhang1,2, Yong-Gang Xu1,3, Jian-Xin Zhang1, Lu-Lu Guan1, Yong-Fang Li1**
1School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119
2School of Electronic Engineering, Xi'an Shiyou University, Xi'an 710065
3School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121
Cite this article:   
Jing Zhang, Yong-Gang Xu, Jian-Xin Zhang et al  2020 Chin. Phys. Lett. 37 037101
Download: PDF(839KB)   PDF(mobile)(830KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a coupling model to describe the interaction between the bright and dark modes of the plasmons of a dimer composed of two orthogonal gold nano-rods (GNRs), referred to as the BDMC model. This model shows that the eigen-frequencies of the coupled plasmons are governed by Coulomb potential and electrostatic potential. With the BDMC model, the behaviors of the coupling coefficient and the frequency offset, which is a new parameter introduced here, are revealed. Meanwhile, the asymmetric behavior of two eigen-frequencies related to gap of two GNRs is explained. Using the harmonic oscillator model and the coupled parameters obtained by the BDMC model, the bright mode absorption spectra of the dimer are calculated and the results agree with the numerical simulation.
Received: 19 November 2019      Published: 22 February 2020
PACS:  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
Fund: Supported by the National Natural Science Foundation of China under Grant No. 11474191, and the Natural Science Foundation of Shaanxi Province under Grant No. 2018JQ1050.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/037101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/037101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing Zhang
Yong-Gang Xu
Jian-Xin Zhang
Lu-Lu Guan
Yong-Fang Li
[1]Zhang S et al 2008 Phys. Rev. Lett. 101 047401
[2]Andrey E M et al 2010 Rev. Mod. Phys. 82 2257
[3]Hao F et al 2008 Nano Lett. 8 3983
[4]Dong Z G et al 2010 Appl. Phys. Lett. 97 114101
[5]Hokari R et al 2014 J. Opt. Soc. Am. B 31 1000
[6]Kekatpure R D et al 2010 Phys. Rev. Lett. 104 243902
[7]Wang G et al 2012 Opt. Express 20 20902
[8]Yang Z J et al 2011 Opt. Lett. 36 1542
[9]Luk'yanchuk B et al 2010 Nat. Mater. 9 707
[10]Mukherjee S et al 2010 Nano Lett. 10 2694
[11]Zhang S et al 2016 ACS Nano 10 11105
[12]Liu N et al 2009 Nat. Mater. 8 758
[13]Cui C et al 2018 ACS Photon. 5 4074
[14]Ai B et al 2018 J. Phys. Chem. C 122 20935
[15]Dong Z G et al 2010 Opt. Express 18 18229
[16]Tian Y et al 2017 Opt. Eng. 56 107106
[17]Xia S X et al 2016 Opt. Express 24 17886
[18]Vafapour Z and Alaei H 2017 Plasmonics 12 479
[19]Stete F et al 2017 AfCS Photon. 4 1669
[20]Lee S et al 2018 Opt. Express 26 21537
[21]Bakhti S et al 2016 Sci. Rep. 6 32061
[22]Yin S et al 2015 Sci. Rep. 5 16440
[23]Sarkar M et al 2015 Opt. Express 23 27376
[24]Garrido Alzar C L et al 2002 Am. J. Phys. 70 37
[25]Novotny L 2010 Am. J. Phys. 78 1199
[26]Lovera A et al 2013 ACS Nano 7 4527
[27]Cheng H et al 2013 Appl. Phys. Lett. 103 203112
[28]Zuloaga J and Nordlander P 2011 Nano Lett. 11 1280
[29]Lassiter J B et al 2012 Nano Lett. 12 1058
[30]Davis T J and Gómez D E 2017 Rev. Mod. Phys. 89 011003
[31]Ma P P et al 2016 Acta Phys. Sin. 65 217801
[32]Zhang J et al 2018 J. Opt. Soc. Am. B 35 1854
[33]Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[34]Sidorenko S and Martin O J F 2007 Opt. Express 15 6380
[35]Berenger J P 1994 J. Comput. Phys. 114 185
[36]Mittra R and Pekel U 1995 IEEE Microwave Guided Wave Lett. 5 84
Related articles from Frontiers Journals
[1] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 037101
[2] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 037101
[3] MAO Sheng-Hong, MA Yu-Ting, and XUE Ju-Kui. Energy Band Structure of the Electron Gas in Periodic Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(8): 037101
[4] DOU Xiu-Ming, SUN Bao-Quan, WANG Bao-Rui, MA Shan-Shan, ZHOU Rong, HUANG She-Song, NI Hai-Qiao, NIU Zhi-Chuan. Tuning Photoluminescence Energy and Fine Structure Splitting in Single Quantum Dots by Uniaxial Stress[J]. Chin. Phys. Lett., 2008, 25(3): 037101
[5] JIN Jing, TANG Yi. Ground-State Properties of Charged Bosons Confined in a One-Dimensional Harmonic Double-Well Trap: Diffusion Monte Carlo Calculations[J]. Chin. Phys. Lett., 2007, 24(9): 037101
[6] LIU Yong-Hui, KONG Xiao-Jun. Exciton and Biexciton Binding Energies in Rectangular Quantum Dots[J]. Chin. Phys. Lett., 2005, 22(11): 037101
[7] ZHANG Zhan-Jun, LI Bai-Wen, RAO Jian-Guo, BAO Cheng-Guang. Transition of the True Ground State in a Coupled Three-Layer Quantum Dot[J]. Chin. Phys. Lett., 2002, 19(7): 037101
[8] GU Jian-hua, CHEN Yi-wen, LIANG Bing-jie, LU Bin, LU Zu-hong. Surface Plasmon Resonance Investigations of Photoinduced Changes in Liquid Crystalline Azobenzene Polymer Langmuir-Blodgette Films[J]. Chin. Phys. Lett., 1997, 14(11): 037101
[9] YU Zhigang, LANG Caiyi, LIN Duliang, SUN Xin. Biexcitons in Conjugated Polymers[J]. Chin. Phys. Lett., 1995, 12(11): 037101
[10] WU Changqin. Electron-Hole Interaction in Conjugated Polymers[J]. Chin. Phys. Lett., 1995, 12(1): 037101
Viewed
Full text


Abstract