Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 030501    DOI: 10.1088/0256-307X/37/3/030501
Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrödinger Equation
Bao Wang1, Zhao Zhang2, Biao Li2**
1Robotics Institute, Ningbo University of Technology, Ningbo 315211
2School of Mathematics and Statistics, Ningbo University, Ningbo 315211
Cite this article:   
Bao Wang, Zhao Zhang, Biao Li 2020 Chin. Phys. Lett. 37 030501
Download: PDF(719KB)   PDF(mobile)(716KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on velocity resonance and Darboux transformation, soliton molecules and hybrid solutions consisting of soliton molecules and smooth positons are derived. Two new interesting results are obtained: the first is that the relationship between soliton molecules and smooth positons is clearly pointed out, and the second is that we find two different interactions between smooth positons called strong interaction and weak interaction, respectively. The strong interaction will only disappear when $t \to \infty$. This strong interaction can also excite some periodic phenomena.
Received: 29 December 2019      Published: 22 February 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11775121, Department of Education of Zhejiang Province under Grant No. Y201839043 and the K.C. Wong Magna Fund in Ningbo University.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Bao Wang
Zhao Zhang
Biao Li
[1]He J S, Zhang H R, Wang L H, Porsezian K and Fokas A S 2013 Phys. Rev. E 87 052914
[2]He J S, Wang L H, Li L J, Porsezian K and Erdélyi R 2014 Phys. Rev. E 89 062917
[3]Wang L H, He J S, Xu H, Wang J and Porsezian K 2017 Phys. Rev. E 95 042217
[4]He J S, Zhang L, Cheng Y and Li Y S 2006 Sci. Chin. Ser. A: Math. 49 1867 DOI: 10.1007/s11425-006-2025
[5]Lakomy K, Nath R and Santos L 2012 Phys. Rev. A 85 033618
[6]Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Science 356 50
[7]Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[8]Lou S Y 2019 arXiv:1909.03399
[9]Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501
[10]Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[11]Zhang Y S, Guo L J, He J S and Zhou Z X 2015 Lett. Math. Phys. 105 853
[12]Qiu D Q and Cheng W G 2019 Appl. Math. Lett. 98 13
[13]Liu W, Zhang Y S and He J S 2018 Waves Random Complex Media 28 203
[14]Song W J, Xu S W, Li M H and He J S 2019 Nonlinear Dyn. 97 2135
[15]Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
Related articles from Frontiers Journals
[1] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 030501
[2] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 030501
[3] Ying Yang, Ze-Hua Tian, Ji-Liang Jing. Analogue Soliton with Variable Mass in Super-Conducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2020, 37(4): 030501
[4] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 030501
[5] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 030501
[6] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 030501
[7] Xin Li, Wen-Hao Xu, Dong-Ming Chen, Li-Ke Cao, Zhan-Ying Yang. Formation of Square-Shaped Waves in the Biscay Bay[J]. Chin. Phys. Lett., 2019, 36(9): 030501
[8] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 030501
[9] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 030501
[10] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schrödinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 030501
[11] Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schrödinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 030501
[12] Jun Yang, Zuo-Nong Zhu. Higher-Order Rogue Wave Solutions to a Spatial Discrete Hirota Equation[J]. Chin. Phys. Lett., 2018, 35(9): 030501
[13] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 030501
[14] Xiang-Shu Liu, Yang Ren, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Nonlinear Excitation and State Transition of Multi-Peak Solitons[J]. Chin. Phys. Lett., 2018, 35(7): 030501
[15] Senyue Lou, Ji Lin. Rogue Waves in Nonintegrable KdV-Type Systems[J]. Chin. Phys. Lett., 2018, 35(5): 030501
Full text