Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 028103    DOI: 10.1088/0256-307X/37/2/028103
Controlling the Coffee Ring Effect on Graphene and Polymer by Cations
Haijun Yang1,4†, Yizhou Yang4,5†, Shiqi Sheng4, Binghai Wen3, Nan Sheng1,4, Xing Liu2, Rongzheng Wan1,4, Long Yan4, Zhengchi Hou1,4, Xiaoling Lei1,4, Guosheng Shi2**, Haiping Fang1,4,5**
1Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204
2Shanghai Applied Radiation Institute and State Key Lab Advanced Special Steel, Shanghai University, Shanghai 200444
3Guangxi Key Lab of Multisource Information Mining & Security, Guangxi Normal University, Guilin 541004
4Division of Interfacial Water, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
5School of Science, East China University of Science and Technology, Shanghai 200237
Cite this article:   
Haijun Yang, Yizhou Yang, Shiqi Sheng et al  2020 Chin. Phys. Lett. 37 028103
Download: PDF(3598KB)   PDF(mobile)(6175KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, there are great efforts that have been taken to suppressing/controlling the coffee ring effect, but it is of challenge to achieve inexpensive and efficient control with less disturbance, suitable for scalable production and highly enhancing the printing/dyeing color fastness. By only adding trace amounts of salt into the suspensions, here we experimentally achieve the facile and highly efficient control of the coffee ring effect of suspended matter on substrates of graphene, natural graphite, and polyethylene terephthalate surfaces. Notably, friction force measurements show that ion-controlled uniform patterns also greatly enhance color fastness. Molecular dynamics simulations reveal that, due to strong hydrated cation-$\pi$ interactions between hydrated cations and aromatic rings in the substrate surface, the suspended matters are adsorbed on the surfaces mediated by cations so that the suspended matters are uniformly distributed. These findings will open new avenues for fabricating functional patterns on graphene substrates and will benefit practical applications including printing, coating, and dyeing.
Received: 06 January 2020      Published: 14 January 2020
PACS:  81.15.Lm (Liquid phase epitaxy; deposition from liquid phases (melts, solutions, And surface layers on liquids))  
  81.16.Dn (Self-assembly)  
  68.08.-p (Liquid-solid interfaces)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. U1632135, U1832170, 11862003, 11474299, 11574339, U1932123, and 11722548, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Nos. QYZDJ-SSW-SLH053 and QYZDJ-SSW-SLH019), and the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M03).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Haijun Yang
Yizhou Yang
Shiqi Sheng
Binghai Wen
Nan Sheng
Xing Liu
Rongzheng Wan
Long Yan
Zhengchi Hou
Xiaoling Lei
Guosheng Shi
Haiping Fang
[1]Deegan R D, Bakajin O, Dupont T F et al 1997 Nature 389 827
[2]Larson R G 2017 Nature 550 466
[3]Minemawari H, Yamada T, Matsui H et al 2011 Nature 475 364
[4]Yunker P J, Still T, Lohr M A et al 2011 Nature 476 308
[5]2014 Nature 515 166
[6]Han W and Lin Z 2012 Angew. Chem. Int. Ed. 51 1534
[7]Zhang Z, Zhang X, Xin Z et al 2013 Adv. Mater. 25 6714
[8]Diao Y, Tee B C K, Giri G et al 2013 Nat. Mater. 12 665
[9]Devineau S, Anyfantakis M, Marichal L et al 2016 J. Am. Chem. Soc. 138 11623
[10]Liu G L, Kim J, Lu Y et al 2006 Nat. Mater. 5 27
[11]Sempels W, De Dier R, Mizuno H et al 2013 Nat. Commun. 4 1757
[12]Talbot E L, Yang L, Berson A et al 2014 ACS Appl. Mater. & Interfaces 6 9572
[13]Bail R, Hong J Y and Chin B D 2018 RSC Adv. 8 11191
[14]Gorr H M, Zueger J M and Barnard J A 2012 J. Phys. Chem. B 116 12213
[15]Lei Y, Zhang X, Xu D et al 2018 J. Phys. Chem. Lett. 9 2380
[16]Cui L, Zhang J, Zhang X et al 2012 ACS Appl. Mater. & Interfaces 4 2775
[17]Li Y, Yang Q, Li M et al 2016 Sci. Rep. 6 24628
[18]Manos A and Damien B 2014 Angew. Chem. Int. Ed. 53 14077
[19]Seo C, Jang D, Chae J et al 2017 Sci. Rep. 7 500
[20]Anyfantakis M, Geng Z, Morel M et al 2015 Langmuir 31 4113
[21]Tekin E, De Gans B J and Schubert U S 2004 J. Mater. Chem. 14 2627
[22]Soltman D and Subramanian V 2008 Langmuir 24 2224
[23]Yen T M, Fu X, Wei T et al 2018 Sci. Rep. 8 3157
[24]Dugyala V R and Basavaraj M G 2014 Langmuir 30 8680
[25]Larson R G 2012 Angew. Chem. Int. Ed. 51 2546
[26]Liu L H , Zorn G, Castner D G et al 2010 J. Mater. Chem. 20 5041
[27]Shuping P, Yenny H, Xinliang F et al 2011 Adv. Mater. 23 2779
[28]Novoselov K S, Fal'ko V I, Colombo L et al 2012 Nature 490 192
[29]Esfandiar A, Radha B, Wang F C et al 2017 Science 358 511
[30]Jain T, Rasera B C, Guerrero R J S et al 2015 Nat. Nanotechnol. 10 1053
[31]Wu X, Pei Y and Zeng X C 2009 Nano Lett. 9 1577
[32]Stankovich S, Dikin D A, Dommett G H B et al 2006 Nature 442 282
[33]Yasaei P, Kumar B, Hantehzadeh R et al 2014 Nat. Commun. 5 4911
[34]Secor E B, Lim S, Zhang H et al 2014 Adv. Mater. 26 4533
[35]Shi G, Chen L, Yang Y et al 2018 Nat. Chem. 10 776
[36]Chen L, Shi G, Shen J et al 2017 Nature 550 380
[37]Shi G, Liu J, Wang C et al 2013 Sci. Rep. 3 3436
[38]Ma J C and Dougherty D A 1997 Chem. Rev. 97 1303
[39]Mahadevi A S and Sastry G N 2013 Chem. Rev. 113 2100
[40]Shi G, Dang Y, Pan T et al 2016 Phys. Rev. Lett. 117 238102
Related articles from Frontiers Journals
[1] YANG Yi, ZHOU Chang-Jian, PENG Ping-Gang, XIE Dan, REN Tian-Ling, PAN Xiao, LIU Jing-Song. The Structural and Electrical Properties of Al/Pb(Zr0.52Ti0.48)O3/Al2O3/Si with an Al2O3 Layer Prepared by using the Molecular Atomic Deposition Method[J]. Chin. Phys. Lett., 2012, 29(12): 028103
[2] WANG Yin-Bo,CHEN Li-Ping,**,ZHANG Chen,WANG Yue,GUO Zheng-Shan,CHEN Yi-Ling,FENG Qing-Rong**,GAN Zi-Zhao. Solution Fabrication of a Superconducting MgB2 Coated Conductor on Stainless Steel[J]. Chin. Phys. Lett., 2012, 29(4): 028103
[3] CUI Yin-Fang, WANG Cong, WU Su-Juan, LIU Yu, WANG Tian-Min. Preparation and Photocatalytic Activity of ZnO/Fe2O3 Nanorod Arrays and ZnO/NiO Nanotube Arrays[J]. Chin. Phys. Lett., 2012, 29(3): 028103
[4] DENG Yan-Hong, YE Chao**, YUAN Yuan, LIU Hui-Min, CUI Jin . Effect of the Viscosity of Silicone Oil on the Aggregation Behavior of C:F Clusters on a Silicone Oil Liquid Substrate[J]. Chin. Phys. Lett., 2011, 28(4): 028103
[5] YANG Qing-Hui, ZHANG Huai-Wu, LIU Ying-Li, WEN Qi-Ye, ZHA Jie. An Artificially Garnet Crystal Materials Using In Terahertz Waveguide[J]. Chin. Phys. Lett., 2008, 25(11): 028103
[6] BAI Yu-Lin, CHEN Xiang-Rong, ZHOU Xiao-Lin, CHENG Xiao-Hong, YANG Xiang-Dong,. First-Principles Calculations for Structures and Melting Temperature of Si6 Clusters[J]. Chin. Phys. Lett., 2006, 23(8): 028103
[7] WANG Guan-zhong, LI Peng, MA Yu-rong, FANG Rong-chuan. Junction Current Drift Effect of the Cu/Porous Si Device Prepared by Electrodeposition[J]. Chin. Phys. Lett., 1997, 14(2): 028103
[8] LUO Tao, ZHANG Weiqing, GAN Fuxi. Surface-Enhanced Resonance Raman Spectra of Langmuir-Blodgett Films of Tetra-Lauryl Chloroaluminum Phthalocyanine[J]. Chin. Phys. Lett., 1992, 9(7): 028103
[9] FANG Jiyu, WEI Yu, SUN Zhengmin*. Fabrication of Polar Films by Langmuir-Blodgett Technique[J]. Chin. Phys. Lett., 1991, 8(7): 028103
Full text