Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 028101    DOI: 10.1088/0256-307X/37/2/028101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Near-Field Optical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes
Lele Wang1,2, Bosai Lyu1,2, Qiang Gao1,2, Jiajun Chen1,2, Zhe Ying1,2, Aolin Deng1,2, Zhiwen Shi1,2**
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Lele Wang, Bosai Lyu, Qiang Gao et al  2020 Chin. Phys. Lett. 37 028101
Download: PDF(3601KB)   PDF(mobile)(3590KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Single-walled carbon nanotubes (SWCNTs), due to their outstanding electrical and optical properties, are expected to have extensive applications, such as in transparent conductive films and ultra-small field-effect transistors (FETs). However, those applications can only be best realized with pure metallic or pure semiconducting SWCNTs. Hence, identifying and separating metallic from semiconducting SWCNTs in as-grown samples are crucial. In addition, knowledge of the type of an SWCNT is also important for further exploring its new properties in fundamental science. Here we report employing scanning near-field optical microscopy (SNOM) as a direct and simple method to identify metallic and semiconducting SWCNTs on SiO$_2$/Si substrates. Metallic and semiconducting SWCNTs show distinct near-field optical responses because the metallic tubes support plasmons whereas the semiconducting tubes do not. The reliability of this method is verified using FET testing and Rayleigh scattering spectroscopy. Our result demonstrates that the SNOM technique provides a reliable, simple, noninvasive and in situ method to distinguish between metallic and semiconducting SWCNTs.
Received: 24 October 2019      Published: 18 January 2020
PACS:  81.05.U- (Carbon/carbon-based materials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  68.37.Uv (Near-field scanning microscopy and spectroscopy)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11574204 and 11774224, and the National Key Research and Development Program of China (2016YFA0302001). Z.S. acknowledges the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and additional support from a Shanghai talent program.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/028101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/028101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lele Wang
Bosai Lyu
Qiang Gao
Jiajun Chen
Zhe Ying
Aolin Deng
Zhiwen Shi
[1]Hills G et al 2019 Nature 572 595
[2]Dresselhaus G and Riichiro S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[3]Dresselhaus M S et al 1996 Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Amsterdam: Elsevier)
[4]Tans S J et al 1998 Nature 393 49
[5]Bachtold A et al 2001 Science 294 1317
[6]Chen Z et al 2006 Science 311 1735
[7]Javey A et al 2005 Nano Lett. 5 345
[8]Ha N V and Song H J 2015 Chin. Phys. Lett. 32 038201
[9]Tans S J et al 1997 Nature 386 474
[10]White C T and Todorov T N 1998 Nature 393 240
[11]Kong J et al 2001 Phys. Rev. Lett. 87 106801
[12]Lv Y Z et al 2017 Chin. Phys. Lett. 34 047302
[13]Close G F et al 2008 Nano Lett. 8 706
[14]Debjit C et al 2003 J. Am. Chem. Soc. 125 3370
[15]Chen Z, Du X, Du M H, Rancken C D, Cheng H P and Rinzler A G 2003 Nano Lett. 3 1245
[16]Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q , Xu Z and Peng F 2014 Nature 510 522
[17]Qin X, Peng F, Yang F, He X, Huang H, Luo D, Yang J, Wang S, Liu H and Peng L 2014 Nano Lett. 14 512
[18]Bachtold A, Fuhrer M, Plyasunov S, Forero M, Anderson E H, Zettl A and McEuen P L 2000 Phys. Rev. Lett. 84 6082
[19]Lu W, Xiong Y, Hassanien A, Zhao W, Zheng M and Chen L 2009 Nano Lett. 9 1668
[20]Heo J and Bockrath M 2005 Nano Lett. 5 853
[21]Li J, He Y, Han Y, Liu K, Wang J, Li Q, Fan S and Jiang K 2012 Nano Lett. 12 4095
[22]Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47
[23]Jorio A, Saito R, Hafner J, Lieber C, Hunter D, McClure T, Dresselhaus G and Dresselhaus M 2001 Phys. Rev. Lett. 86 1118
[24]Gao B, Zhang Y, Zhang J, Kong J and Liu Z 2008 J. Phys. Chem. C 112 8319
[25]Bechtel H A, Muller E A, Olmon R L, Martin M C and Raschke M B 2014 Proc. Natl. Acad. Sci. USA 111 7191
[26]Gerber J A, Berweger S, O'Callahan B T and Raschke M B 2014 Phys. Rev. Lett. 113 055502
[27]Shi Z, Hong X, Bechtel H A, Zeng B, Martin M C, Watanabe K, Taniguchi T, Shen Y R and Wang F 2015 Nat. Photon. 9 515
[28]Zhao S, Sheng W, Fanqi W, Wu S, Bakti U I, Tairu L, Lili J, Yudan S, Siqi W and Kenji W 2018 Phys. Rev. Lett. 121 047702
[29]Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M and Dominguez G 2012 Nature 487 82
[30]Németh G, Datz D, Tóháti H M, Pekker Á and Kamarás K 2016 Phys. Status Solidi 253 2413
[31]Németh G, Datz D, Tóháti H M, Pekker á Otsuka K, Inoue T, Maruyama S and Kamarás K 2017 Phys. Status Solidi B 254 1700433
[32]Huang S, Cai X and Liu J 2003 J. Am. Chem. Soc. 125 5636
[33]Huang S, Woodson M, Smalley R and Liu J 2004 Nano Lett. 4 1025
[34]Hong B H, Lee J Y, Beetz T, Zhu Y, Kim P and Kim K S 2005 J. Am. Chem. Soc. 127 15336
[35]Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie J P, Nishi Y and Gibbons J 2005 Proc. Natl. Acad. Sci. USA 102 16141
[36]Jin Z, Chu H, Wang J, Hong J, Tan W and Li Y 2007 Nano Lett. 7 2073
[37]Zhang R, Xie H, Zhang Y, Zhang Q, Jin Y, Li P, Qian W and Wei F 2013 Carbon 52 232
[38]Liu B, Wu F, Gui H, Zheng M and Zhou C 2017 ACS Nano 11 31
[39]Li H Y, Ying Z, Lyu B S, Deng A L, Wang L L, Taniguchi T, Watanabe K and Shi Z W 2018 Nano Lett. 18 8011
[40]Liu K, Deslippe J, Xiao F, Capaz R B, Hong X, Aloni S, Zettl A, Wang W, Bai X and Louie S G 2012 Nat. Nanotechnol. 7 325
[41]Liu K, Hong X, Zhou Q, Jin C, Li J, Zhou W, Liu J, Wang E, Zettl A and Wang F 2013 Nat. Nanotechnol. 8 917
[42]Sfeir M Y, Feng W, Limin H, Chia-Chin C, Hone J, O'Brien S P, Heinz T F and Brus L E 2004 Science 306 1540
Related articles from Frontiers Journals
[1] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 028101
[2] Kun Luo , Bing Liu , Lei Sun , Zhisheng Zhao, and Yongjun Tian . Design of a Class of New $sp^{2}$–$sp^{3}$ Carbons Constructed by Graphite and Diamond Building Blocks[J]. Chin. Phys. Lett., 2021, 38(2): 028101
[3] Long Liu, Sheng-Guo Zhou, Zheng-Bing Liu, Yue-Chen Wang, Li-Qiu Ma. Effect of Chromium on Structure and Tribological Properties of Hydrogenated Cr/a-C:H Films Prepared via a Reactive Magnetron Sputtering System[J]. Chin. Phys. Lett., 2016, 33(02): 028101
[4] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 028101
[5] ZHANG Dong, LIN Liang-Zhong, ZHU Jia-Ji. Electronic Structures of Carbon-Based Kagomé Lattices[J]. Chin. Phys. Lett., 2014, 31(2): 028101
[6] WANG Cheng-Bing**,SHI Jing,GENG Zhong-Rong,ZHANG Jun-Yan. Role of Surface Hydrogen Bonds in Determining the Friction Behaviors of Hydrogenated Diamond-like Carbon Films[J]. Chin. Phys. Lett., 2012, 29(5): 028101
Viewed
Full text


Abstract