Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 027502    DOI: 10.1088/0256-307X/37/2/027502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal
Qi Wang1, Qianheng Du2, Cedomir Petrovic2**, Hechang Lei1**
1Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials $&$ Micro-nano Devices, Renmin University of China, Beijing 100872
2Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, USA
Cite this article:   
Qi Wang, Qianheng Du, Cedomir Petrovic et al  2020 Chin. Phys. Lett. 37 027502
Download: PDF(829KB)   PDF(mobile)(818KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the growth of ternary half-Heusler MnPtSn single crystals and detailed study on its structural and physical properties. MnPtSn single crystal has a larger lattice parameter than that in polycrystal and it exhibits antiferromagnetism with transition temperature $T_{\rm N}$ at about 215 K, distinctly different from the ferromagnetism of MnPtSn polycrystal. Hall resistivity measurement indicates that the dominant carriers are hole-type and the nearly temperature-independent carrier concentration reaches about $2.86\times10^{22}$ cm$^{-3}$ at 5 K. Moreover, the carrier mobility is also rather low (4.7 cm$^{2}$$\cdot$V$^{-1}$s$^{-1}$ at 5 K). The above results strongly suggest that the significant Mn/Sn anti-site defects, i.e., the content of Mn in MnPtSn single crystal, play a vital role on structural, magnetic and transport properties.
Received: 05 December 2019      Published: 18 January 2020
PACS:  75.50.Ee (Antiferromagnetics)  
  75.47.Np (Metals and alloys)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2018YFE0202600, 2016YFA0300504), the National Natural Science Foundation of China (Nos. 11574394, 11774423, 11822412), the Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University of China (RUC) (Nos. 15XNLQ07, 18XNLG14, 19XNLG17), and the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy (DOE) under Contract No. DE-SC0012704.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/027502       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/027502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Wang
Qianheng Du
Cedomir Petrovic
Hechang Lei
[1]Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2]Galanakis I and Dederichs P H 2005 Half-metallic Alloys: Fundamentals and Applications (Berlin: Springer-Verlag) p 1
[3]Katsnelson M I, Irkhin V Y, Chioncel L, Lichtenstein A I and de Groot R A 2008 Rev. Mod. Phys. 80 315
[4]Hirohata A, Sagar J, Lari L, Fleet L R and Lazarov V K 2013 Appl. Phys. A 111 423
[5]Hirohata A and Takanashi K 2014 J. Phys. D 47 193001
[6]Felser C, Wollmann L, Chadov S, Fecher G H and Parkin S S P 2015 APL Mater. 3 041518
[7]Geldart D J W and Ganguly P 1970 Phys. Rev. B 1 3101
[8]Podgornykh S M, Streltsov S V, Kazantsev V A and Shreder E I 2007 J. Magn. Magn. Mater. 311 530
[9]de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[10]Ishida S, Fujii S, Kashiwagi S and Asano S 1995 J. Phys. Soc. Jpn. 64 2152
[11]Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
[12]Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[13]Jourdan M, Minár J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers H J, Schönhense G, Ebert H, Felser C and Kläui M 2014 Nat. Commun. 5 3974
[14]Jeong T, Weht R and Pickett W E 2005 Phys. Rev. B 71 184103
[15]Singh S, DSouza S W, Nayak J, Suard E, Chapon L, Senyshyn A, Petricek V, Skourski Y, Nicklas M, Felser C and Chadov S 2016 Nat. Commun. 7 12671
[16]Canfield P C, Thompson J D, Beyermann W P, Lacerda A, Hundley M F, Peterson E, Fisk Z and Ott H R 1991 J. Appl. Phys. 70 5800
[17]Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119
[18]Shekhar C, Kumar N, Grinenko V, Singh S, Sarkar R, Luetkens H, Wu S, Zhang Y, Komarek A C, Kampert E, Skourski Y, Wosnitza J, Schnelle W, McCollam A, Zeitler U, Kübler J, Yan B, Klauss H H, Parkin S S P and Felser C 2018 Proc. Natl. Acad. Sci. USA 115 9140
[19]Singha R, Roy S, Pariari A, Satpati B and Mandal P 2019 Phys. Rev. B 99 035110
[20]Otto M J, Feil H, van Woerden R A M, Wijngaard J, van der Valk P J, van Bruggen C F and Haas C 1987 J. Magn. Magn. Mater. 70 33
[21]Li Y, Ding B, Wang X, Zhang H, Wang W and Liu Z 2018 Appl. Phys. Lett. 113 062406
[22]Swekis P, Markou A, Kriegner D, Gayles J, Schlitz R, Schnelle W, Goennenwein S T B and Felser C 2019 Phys. Rev. Mater. 3 013001(R)
[23]Vir P, Gayles J, Sukhanov A S, Kumar N, Damay F, Sun Y, Kübler J, Shekhar C and Felser C 2019 Phys. Rev. B 99 140406(R)
[24]Liu Z H, Burigu A, Zhang Y J, Jafri H M, Ma X Q, Liu E K, Wang W H and Wu G H 2018 Scr. Mater. 143 122
[25]Buschow K H J, van Engen P G and Jongebreur R 1983 J. Magn. Magn. Mater. 38 1
[26]Slater J C 1964 J. Chem. Phys. 41 3199
[27]Kroder J, Manna K, Kriegner D, Sukhanov A S, Liu E K, Borrmann H, Hoser A, Gooth J, Schnelle W, Inosov D S, Fecher G H and Felser C 2019 Phys. Rev. B 99 174410
[28]Simon E, Vida J G, Khmelevskyi S and Szunyogh L 2015 Phys. Rev. B 92 054438
[29]Jeon B, Koteswararao B, Park C B, Shu G J, Riggs S C, Moon E G, Chung S B, Chou F C and Kim K H 2016 Sci. Rep. 6 36970
[30]Sharma P A, Ahn J S, Hur N, Park S, Kim S B, Lee S, Park J G, Guha S and Cheong S W 2004 Phys. Rev. Lett. 93 177202
[31]Peacor S D, Cohn J L and Uher C 1991 Phys. Rev. B 43 8721
Related articles from Frontiers Journals
[1] Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu. Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature[J]. Chin. Phys. Lett., 2022, 39(6): 027502
[2] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 027502
[3] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 027502
[4] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping[J]. Chin. Phys. Lett., 2020, 37(6): 027502
[5] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping *[J]. Chin. Phys. Lett., 0, (): 027502
[6] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 027502
[7] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 027502
[8] Pan Liu, Wei-Hua Wang, Wei-Chao Wang, Ya-Hui Cheng, Feng Lu, Hui Liu. D-Type Anti-Ferromagnetic Ground State in Ca$_{2}$Mn$_{2}$O$_{5}$[J]. Chin. Phys. Lett., 2017, 34(2): 027502
[9] CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong. Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4[J]. Chin. Phys. Lett., 2015, 32(12): 027502
[10] MALIK Muhammad-Imran, SUN Ying, DENG Si-Hao, SHI Ke-Wen, HU Peng-Wei, WANG Cong. Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn3InC[J]. Chin. Phys. Lett., 2015, 32(06): 027502
[11] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 027502
[12] LIU Zhao-Sen, YANG Cui-Hong, GU Bin, MA Rong, LI Qing-Fang. The Application of a New Simulation Approach to Ferrimagnetic Nanowires[J]. Chin. Phys. Lett., 2013, 30(9): 027502
[13] XU Yin-Jie, ZHAO Hui, CHEN Yu-Guang, YAN Yong-Hong. Spin-Peierls Instability in the Ferromagnetic Heisenberg Ladder[J]. Chin. Phys. Lett., 2013, 30(3): 027502
[14] YUAN Xue-Yong, XUE Xiao-Bo, SI Li-Fang, DU Jun, XU Qing-Yu. Exchange Bias in Polycrystalline BiFe1-xMnxO3/Ni81Fe19 Bilayers[J]. Chin. Phys. Lett., 2012, 29(9): 027502
[15] CHEN Feng-Liang,ZHOU Shi-Ming**. Magnetoresistance Effect in Antiferromagnet-Based Nanogranular Films[J]. Chin. Phys. Lett., 2012, 29(4): 027502
Viewed
Full text


Abstract