Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 026801    DOI: 10.1088/0256-307X/37/2/026801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Effect of Zr Content on Formation and Optical Properties of the Layered PbZr$_{x}$Ti$_{1-x}$O$_{3}$ Films
Yang-Yang Xu1,2, Yu Wang1,2, Ai-Yun Liu1, Wang-Zhou Shi1, Gu-Jin Hu1**, Shi-Min Li2, Hui-Yong Deng2, Ning Dai2**
1Department of Physics, College of Mathematics and Science, Shanghai Normal University, Shanghai 200234
2National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
Cite this article:   
Yang-Yang Xu, Yu Wang, Ai-Yun Liu et al  2020 Chin. Phys. Lett. 37 026801
Download: PDF(763KB)   PDF(mobile)(760KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract PbZr$_{x}$Ti$_{1-x}$O$_{3}$ (PZT) films are fabricated on F-doped tin oxide (FTO) substrates using chemical solutions containing PVP polymer and rapid thermal annealing processing. The dependence of the layered PZT multilayer formation and their optical properties on the Zr content $x$ are examined. It is found that all the PZT films are crystallized and exhibit 110-preferred orientation. When $x$ varies in the region of 0–0.8, the PZT films display lamellar structures, and a high reflection band occurs in each optical reflectance spectrum curve. Especially, those PZT films with Zr/Ti atomic ratio of 35/65–65/35 show clearly layered cross-sectional morphologies arranged alternatively by porous and dense PZT layers, and have a peak optical reflectivity of $>$70% and a band width of $>$45 nm. To obtain the optimal Bragg reflection performance of the PZT multilayers, the Zr content should be selected in the range of 0.35–0.65.
Received: 04 November 2019      Published: 18 January 2020
PACS:  68.55.-a (Thin film structure and morphology)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  78.66.-w (Optical properties of specific thin films)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  77.55.hj (PZT)  
Fund: Supported by the Frontier Science Research Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH018), the National Natural Science Foundation of China (Nos. 11174307 and 11933006), and the National Key Basic Research Program of China (No. 2016YFB0402405).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/026801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/026801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang-Yang Xu
Yu Wang
Ai-Yun Liu
Wang-Zhou Shi
Gu-Jin Hu
Shi-Min Li
Hui-Yong Deng
Ning Dai
[1]Li B, Zhou J, Li L, Wang X J, Liu X H and Zi J 2003 Appl. Phys. Lett. 83 4704
[2]Jim K L, Wang D Y, Leung C W, Choy C L and Chan H L 2008 J. Appl. Phys. 103 083107
[3]Oh J M, Hoshina T, Takeda H and Tsurumi T 2013 Appl. Phys. Express 6 062001
[4]Hu G J, Chen J, An D L, Chu J H and Dai N 2005 Appl. Phys. Lett. 86 162905
[5]Hong X K, Hu G J, Chen J, Chu J H, Dai N and Wu H Z 2006 Appl. Phys. Lett. 89 082902
[6]Hu G J, Hong X K, Chu J H and Dai N 2007 Appl. Phys. Lett. 90 162904
[7]Hong X K, Hu G J, Shang J L, Bao J, Chu J H and Dai N 2007 Appl. Phys. Lett. 90 251911
[8]Zhang T, Hu G J, Bu H J, Wu J, Chu J H and Dai N 2010 J. Appl. Phys. 107 084103
[9]Shang J L, Hu G J, Zhang T, Sun Y, Wu J, Chu J H and Dai N 2009J. Am. Ceram. Soc. 92 539
[10]Gong S, Wang Y H, Zhao X Y, Zhang M, Zhao N and Duan Y F 2011 Chin. Phys. Lett. 28 087402
[11]Takenaka S and Kozuka H 2001 Appl. Phys. Lett. 79 3485
[12]Macleod H A 1986 Thin-Film Optical Filters 2nd edn (New York: Macmillan Press) p 412
[13]Shirane G, Sawaguchi E and Takagi Y 1951 Phys. Rev. 84 476
[14]Hu C S, Sun X, Luo Z L and Gao C 2014 Chin. Phys. Lett. 31 110501
Related articles from Frontiers Journals
[1] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 026801
[2] Linfeng Wan, Caoyuan Mu, Yaofeng Liu, Shaoheng Cheng, Qiliang Wang, Liuan Li, Hongdong Li, and Guangtian Zou. Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination[J]. Chin. Phys. Lett., 2022, 39(3): 026801
[3] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 026801
[4] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 026801
[5] Xunheng Ye , Jiawei Shen , Xiangming Tao , Gaoxiang Ye , and Bo Yang. Au Films Composed of Nanoparticles Fabricated on Liquid Surfaces for SERS[J]. Chin. Phys. Lett., 2021, 38(3): 026801
[6] Qiong Wu , Xin Wu , Yue-Shun Zhao , and Shifeng Zhao. Design of Lead-Free Films with High Energy Storage Performance via Inserting a Single Perovskite into Bi$_{4}$Ti$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2020, 37(11): 026801
[7] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 026801
[8] Zi-Cheng Ma, Nan Gao, Shao-Heng Cheng, Jun-Song Liu, Ming-Chao Yang, Peng Wang, Zhi-Yuan Feng, Qi-Liang Wang, Hong-Dong Li. Wettability and Surface Energy of Hydrogen- and Oxygen-Terminated Diamond Films[J]. Chin. Phys. Lett., 2020, 37(4): 026801
[9] Jian Zhang, Shengxi Zhang, Xiaofang Qiu, Yan Wu, Qiang Sun, Jin Zou, Tianxin Li, Pingping Chen. MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs[J]. Chin. Phys. Lett., 2020, 37(3): 026801
[10] Jia-Li Wu, Run-Ze Qi, Qiu-Shi Huang, Yu-Fei Feng, Zhan-Shan Wang, Zi-Hua Xin. Stress, Roughness and Reflectivity Properties of Sputter-Deposited B$_{4}$C Coatings for X-Ray Mirrors[J]. Chin. Phys. Lett., 2019, 36(12): 026801
[11] Han Xu, Zhen-Lin Luo, Chang-Gan Zeng, Chen Gao. Van der Waals Epitaxy of Anatase TiO$_{2}$ on mica and Its Application as Buffer Layer[J]. Chin. Phys. Lett., 2019, 36(7): 026801
[12] Yi-Feng Hu, Xuan Guo, Qing-Qian Qiu, Tian-Shu Lai. Characteristics of Sb$_{6}$Te$_{4}$/VO$_{2}$ Multilayer Thin Films for Good Stability and Ultrafast Speed Applied in Phase Change Memory[J]. Chin. Phys. Lett., 2018, 35(9): 026801
[13] Yi Gu, Hui-Jun Zheng, Xi-Ren Chen, Jia-Ming Li, Tian-Xiao Nie, Xu-Feng Kou. Influence of Surface Structures on Quality of CdTe(100) Thin Films Grown on GaAs(100) Substrates[J]. Chin. Phys. Lett., 2018, 35(8): 026801
[14] Lu Dong, Guan-Yong Wang, Zhen Zhu, Chen-Xiao Zhao, Xin-Yi Yang, Ai-Min Li, Jing-Lei Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Mao-Hai Xie, Jin-Feng Jia. Charge Density Wave States in 2H-MoTe$_{2}$ Revealed by Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2018, 35(6): 026801
[15] Xiao-Qin Zhu, Rui Zhang, Yi-Feng Hu, Tian-Shu Lai, Jian-Hao Zhang, Hua Zou, Zhi-Tang Song. Crystallization Process of Superlattice-Like Sb/SiO$_{2}$ Thin Films for Phase Change Memory Application[J]. Chin. Phys. Lett., 2018, 35(5): 026801
Viewed
Full text


Abstract