Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 020302    DOI: 10.1088/0256-307X/37/2/020302
Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator
Xing-Yu Zhu, Tao Tu**, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo
Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
Cite this article:   
Xing-Yu Zhu, Tao Tu, Ao-Lin Guo et al  2020 Chin. Phys. Lett. 37 020302
Download: PDF(636KB)   PDF(mobile)(628KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The spin qubit in quantum dots is one of the leading platforms for quantum computation. A crucial requirement for scalable quantum information processing is the high efficient measurement. Here we analyze the measurement process of a quantum-dot spin qubit coupled to a superconducting transmission line resonator. Especially, the phase shift of the resonator is sensitive to the spin states and the gate operations. The response of the resonator can be used to measure the spin qubit efficiently, which can be extend to read out the multiple spin qubits in a scalable solid-state quantum processor.
Received: 10 December 2019      Published: 18 January 2020
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Supported by the National Basic Research Programme of China (No. 2017YFA0304100), and the National Natural Science Foundation of China (No. 11974336).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Xing-Yu Zhu
Tao Tu
Ao-Lin Guo
Zong-Quan Zhou
Guang-Can Guo
[1]Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M L 2007 Rev. Mod. Phys. 79 1217
[2]Awschalom D D, Bassett L, Dzurak A S, Hu E L and Petta J R 2013 Science 339 1174
[3]Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A, Reilly D J, Schreiber L R and Veldhorst M 2017 npj Quantum Inf. 3 34
[4]Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981
[5]Kawakami E, Jullien T, Scarlino P, Ward D R, Savage D E, Lagally M G, Dobrovitski V V, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2016 Proc. Natl. Acad. Sci. USA 113 11738
[6]Takeda K, Kamioka J, Otsuka T, Yoneda J, Nakajima T, Delbecq M R, Amaha S, Allison G, Kodera T, Oda S and Tarucha S 2016 Sci. Adv. 2 e1600694
[7]Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102
[8]Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A and Dzurak A S 2015 Nature 526 410
[9]Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G, Petta1 J R 2018 Science 359 439
[10]Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2018 Nature 555 633
[11]Nichol J M, Orona L A, Harvey S P, Fallahi S, Gardner G C, Manfra M J and Yacoby A 2017 npj Quantum Inf. 3 3
[12]Xue X, Watson T F, Helsen J, Ward D R, Savage D E, Lagally M G, Coppersmith S N, Eriksson M A, Wehner S and Vandersypen L M K 2019 Phys. Rev. X 9 021011
[13]Huang W, Yang C H, Chan K W, Tanttu T, Hensen B, Leon R C C, Fogarty M A, Hwang J C C, Hudson F E, Itoh K M, Morello A, Laucht A and Dzurak A S 2019 Nature 569 532
[14]Barthel C, Kjaergaard M, Medford J, Stopa M, Marcus C M, Hanson M P and Gossard A C 2010 Phys. Rev. B 81 161308
[15]Frey T, Leek P J, Beck M, Blais A, Ihn T, Ensslin K and Wallraff A 2012 Phys. Rev. Lett. 108 046807
[16]Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A and Petta J R 2012 Nature 490 380
[17]Deng G W, Wei D, Johansson J R, Zhang M L, Li S X, Li H O, Cao G, Xiao M, Tu T, Guo G C, Jiang H W, Nori F and Guo G P 2015 Phys. Rev. Lett. 115 126804
[18]Mi X, Cady J V, Zajac D M, Deelman P W and Petta J R 2017 Science 355 156
[19]Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123
[20]Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599
[21]Landig A J, Koski J V, Scarlino P, Mendes U C, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2018 Nature 560 179
[22]Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501
[23]Guo G P, Zhang H, Hu Y, Tu T and Guo G C 2008 Phys. Rev. A 78 020302
[24]Wang L, Tu T, Gong B and Guo G C 2015 Phys. Rev. A 92 062346
[25]Lupascu A, Saito S, Picot T, de Groot P C, Harmans C J P M and Mooij J E 2007 Nat. Phys. 3 119
[26]Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[27]Foletti S, Bluhm H, Mahalu D, Umansky V and Yacoby A 2009 Nat. Phys. 5 903
[28]Wu X, Ward D R, Prance J R, Kim D, Gamble J K, Mohr R T, Shi Z, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2014 Proc. Natl. Acad. Sci. USA 111 11938
[29]Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[30]Breuer H P and Petruccione F 2007 Theory of Open Quantum Systems (Oxford: Oxford University Press)
[31]Walls D F and Milburn G J 2008 Quantum Optics (Berlin: Springer)
[32]Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A 2013 Phys. Rev. Lett. 110 146804
[33]Chen Y, Lin F L, Liang X and Jiang N Q 2019 Chin. Phys. Lett. 36 070302
Related articles from Frontiers Journals
[1] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 020302
[2] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 020302
[3] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 020302
[4] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 020302
[5] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 020302
[6] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 020302
[7] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 020302
[8] Shu-Hong Hao, Xian-Shan Huang, Dong Wang. General Single-Mode Gaussian Operation with Two-Mode Entangled State[J]. Chin. Phys. Lett., 2017, 34(7): 020302
[9] Yu Wang, Qi Su. Implementing Classical Hadamard Transform Algorithm by Continuous Variable Cluster State[J]. Chin. Phys. Lett., 2017, 34(7): 020302
[10] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 020302
[11] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 020302
[12] Yang-Qing Guo, Nian-Quan Jiang. Controllably Coupling Superconducting Charge and Flux Qubits by Using Nanomechanical Resonator[J]. Chin. Phys. Lett., 2017, 34(5): 020302
[13] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 020302
[14] Pei Pei, He-Fei Huang, Yan-Qing Guo, He-Shan Song. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface[J]. Chin. Phys. Lett., 2016, 33(02): 020302
[15] ZHAO Jing, HU Ya-Yun, TONG Pei-Qing. The Effect of Quantum Coins on the Spreading of Binary Disordered Quantum Walk[J]. Chin. Phys. Lett., 2015, 32(06): 020302
Full text