Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 127101    DOI: 10.1088/0256-307X/37/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics
Xingyong Huang1,2,3, Liujiang Zhou3*, Luo Yan3, You Wang1, Wei Zhang1, Xiumin Xie1, Qiang Xu1, and Hai-Zhi Song1,3*
1Southwest Institute of Technical Physics, Chengdu 610041, China
2Faculty of Science, Yibin University, Yibin 644007, China
3Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Cite this article:   
Xingyong Huang, Liujiang Zhou, Luo Yan et al  2020 Chin. Phys. Lett. 37 127101
Download: PDF(1540KB)   PDF(mobile)(1530KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) materials and their corresponding van der Waals (vdW) heterostructures are considered as promising candidates for highly efficient solar cell applications. A series of 2D HfX$_{2}$ (X = Cl, Br, I) monolayers are proposed, via first-principle calculations. The vibrational phonon spectra and molecular dynamics simulation results indicate that HfX$_{2}$ monolayers possess dynamical and thermodynamical stability. Moreover, their electronic structure shows that their Heyd–Scuseria–Ernzerhof(HSE06)-based band values (1.033–1.475 eV) are suitable as donor systems for excitonic solar cells (XSCs). The material's significant visible-light absorbing capability (${\sim}10^{5}$ cm$^{-1}$) and superior power conversion efficiency (${\sim}$20%) are demonstrated by establishing a reasonable type II vdW heterostructure. This suggests the significant potential of HfX$_{2}$ monolayers as a candidate material for XSCs.
Received: 10 September 2020      Published: 08 December 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405302).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/12/127101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I12/127101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xingyong Huang
Liujiang Zhou
Luo Yan
You Wang
Wei Zhang
Xiumin Xie
Qiang Xu
and Hai-Zhi Song
[1] Yue G, Deng Z, Wang S et al. 2019 Chin. Phys. Lett. 36 057201
[2] Essig S, Allebé C, Remo T et al. 2017 Nat. Energy 2 17144
[3] Cheng K, Guo Y, Han N et al. 2018 Appl. Phys. Lett. 112 143902
[4] Fang J, Zhou Z, Xiao M et al. 2020 InfoMat 2 291
[5] Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotechnol. 9 257
[6] Zhou L, Kou L, Sun Y et al. 2015 Nano Lett. 15 7867
[7] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[8] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[9] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[10] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[11] Nosé S 1984 J. Chem. Phys. 81 511
[12] Mann S, Rani P, Kumar R et al. 2015 AIP Conf. Proc. 1675 030035
[13] Krukau A V, Vydrov O A, Izmaylov A F et al. 2006 J. Chem. Phys. 125 224106
[14] Molina-Sánchez A and Wirtz L 2011 Phys. Rev. B 84 155413
[15] Cahangirov S, Topsakal M, Aktürk E et al. 2009 Phys. Rev. Lett. 102 236804
[16] Lü T Y, Liao X X, Wang H Q et al. 2012 J. Mater. Chem. 22 10062
[17] Lai K, Yan C L, Gao L Q et al. 2018 J. Phys. Chem. C 122 7656
[18] Zhou L J, Zhang Y F and Wu L M 2013 Nano Lett. 13 5431
[19] Kaur S, Kumar A, Srivastava S et al. 2018 J. Phys. Chem. C 122 26032
[20] Scharber M C, Mühlbacher D, Koppe M et al. 2006 Adv. Mater. 18 789
[21] Green M A, Emery K, Hishikawa Y et al. 2015 Prog. Photovoltaics 23 1
[22] Green M A, Emery K, Hishikawa Y et al. 2017 Prog. Photovoltaics 25 3
[23] Zhao J, Li Y, Yang G et al. 2016 Nat. Energy 1 15027
[24] Dai J and Zeng X C 2014 J. Phys. Chem. Lett. 5 1289
[25] Miao N, Xu B, Bristowe N C et al. 2017 J. Am. Chem. Soc. 139 11125
[26] Lu X, Zhao Z, Li K et al. 2016 RSC Adv. 6 86976
[27] Jiao N, Zhou P, Xue L et al. 2019 J. Phys.: Condens. Matter 31 075702
[28] Zhang X, Zhao X, Wu D et al. 2016 Adv. Sci. 3 1600062
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 127101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 127101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 127101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 127101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 127101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 127101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 127101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 127101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 127101
[11] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 127101
[12] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 127101
[13] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 127101
[14] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 127101
[15] Dandan Guan, Xinwei Wang, Hongying Mao, Shining Bao, Jin-Feng Jia. Adsorption of Perylene on Si(111)($7 \times 7$)[J]. Chin. Phys. Lett., 2020, 37(2): 127101
Viewed
Full text


Abstract