Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 124201    DOI: 10.1088/0256-307X/37/12/124201
Generation and Tunable Focal Shift of the Hybridly Polarized Vector Optical Fields with Parabolic Symmetry
Xu-Zhen Gao1, Meng-Shuai Wang1, Jia-Hao Zhao1, Peng-Cheng Zhao1, Xia Zhang1, Yue Pan1*, Yongnan Li2, Chenghou Tu2, and Hui-Tian Wang3,4*
1School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
2School of Physics and Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, China
3National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Xu-Zhen Gao, Meng-Shuai Wang, Jia-Hao Zhao et al  2020 Chin. Phys. Lett. 37 124201
Download: PDF(898KB)   PDF(mobile)(896KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on a parabolic coordinate system, we theoretically design and experimentally generate hybridly polarized vector optical fields with parabolic symmetry of the first and second kinds, which can further enrich the family of vector optical fields. The wavefront of this new-kind vector optical field contains circular, elliptic and linear polarizations, and the polarizations can keep the same or change along the parabolic curves. Then we present the realization of tunable focal shift with the hybridly polarized vector optical field, and show a specific law of the focal shift of the focused hybridly polarized vector optical field with the parabolic symmetry. We hope these results can provide a new way to flexibly modulate focal fields, which can be applied in realms such as optical machining, optical trapping and information transmission.
Received: 31 August 2020      Published: 08 December 2020
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Ja (Polarization)  
  42.30.Kq (Fourier optics)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11534006, 11674184, 11774183, 11804187 and 11904199), the Natural Science Foundation of Shandong Province (Grant No. ZR2019BF006), and the Collaborative Innovation Center of Extreme Optics.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Xu-Zhen Gao
Meng-Shuai Wang
Jia-Hao Zhao
Peng-Cheng Zhao
Xia Zhang
Yue Pan
Yongnan Li
Chenghou Tu
and Hui-Tian Wang
[1] Zhan Q 2009 Adv. Opt. Photon. 1 1
[2] Zhan Q 2004 Opt. Express 12 3377
[3] Wang X L, Chen J, Li Y, Ding J, Guo C S and Wang H T 2010 Phys. Rev. Lett. 105 253602
[4] Li H, Wang C, Tang M and Li X 2020 Opt. Express 28 18607
[5] Hnatovsky C, Shvedov V, Krolikowski W and Rode A 2011 Phys. Rev. Lett. 106 123901
[6] Novotny L, Beversluis M R, Youngworth K S and Brown T G 2001 Phys. Rev. Lett. 86 5251
[7] Bouhelier A, Beversluis M, Hartschuh A and Novotny L 2003 Phys. Rev. Lett. 90 013903
[8] Li S M, Li Y, Wang X L, Kong L J, Lou K, Tu C, Tian Y and Wang H T 2012 Sci. Rep. 2 1007
[9] Barreiro J T, Wei T C and Kwiat P G 2010 Phys. Rev. Lett. 105 030407
[10] Ciattoni A, Crosignani B, Porto P D and Yariv A 2005 Phys. Rev. Lett. 94 073902
[11] Xie X, Chen Y, Yang K and Zhou J 2014 Phys. Rev. Lett. 113 263901
[12] Liu S, Zhao J, Li P, Wei B and Guo Z 2020 Opt. Lett. 45 575
[13] Lerman G M, Stern L and Levy U 2010 Opt. Express 18 27650
[14] Wang X L, Li Y, Chen J, Guo C S, Ding J and Wang H T 2010 Opt. Express 18 10786
[15] Beckley A M, Brown T G and Alonso M A 2010 Opt. Express 18 10777
[16] Milione G, Sztul H, Nolan D and Alfano R 2011 Phys. Rev. Lett. 107 053601
[17] Bing G, Yang P, Rui G, Xu D, Zhan Q and Cui Y 2014 Appl. Phys. B 117 915
[18] Si Y, Kong L J, Zhang Y, Ren Z C, Pan Y, Tu C, Li Y and Wang H T 2017 Chin. Phys. Lett. 34 044204
[19] Bandres M A, Gutiérrez-Vega J C and Chávez-Cerda S 2004 Opt. Lett. 29 44
[20] Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z and Zhang X 2012 Phys. Rev. Lett. 109 193901
[21] Pan Y, Li Y, Ren Z C, Si Y, Tu C and Wang H T 2014 Phys. Rev. A 89 035801
[22] Wang X L, Ding J, Ni W J, Guo C S and Wang H T 2007 Opt. Lett. 32 3549
[23] Carter W H and Aburdene M F 1987 J. Opt. Soc. Am. A 4 1949
[24] Greene P and Hall D 1999 Opt. Express 4 411
[25] Pu J and Lü B 2001 J. Opt. Soc. Am. A 18 2760
[26] Hernandezaranda R I and Gutiérrezvega J C 2008 Opt. Express 16 5838
[27] Zhang K K, Luo H L and Wen S C 2010 Chin. Phys. Lett. 27 077801
[28] Gao X, Gao M, Zhan Q, Li J, Guo H, Jian W and Zhuang S 2011 Optik 122 671
[29] Ren Z C, Qian S X, Tu C H, Li Y N and Wang H T 2015 Opt. Commun. 334 156
[30] Li J, Zhang J and Li J 2019 Opt. Commun. 439 284
[31]Goodman J W 2017 Introduction to Fourier Optics 4th edn (New York: W. H. Freeman)
[32] Richards B and Wolf E 1959 Proc. R. Soc. A 253 358
[33] Youngworth K S and Brown T G 2000 Opt. Express 7 77
Related articles from Frontiers Journals
[1] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 124201
[2] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 124201
[3] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 124201
[4] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 124201
[5] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 124201
[6] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 124201
[7] Yi Ruan, Kan Li, Qiang Lin, Ting Zhang. Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method[J]. Chin. Phys. Lett., 2018, 35(4): 124201
[8] Yi-Peng Zheng, Jin-Hai Si, Wen-Jiang Tan, Xiao-Jing Liu, Jun-Yi Tong, Xun Hou. Imaging Transparent Objects in a Turbid Medium Using a Femtosecond Optical Kerr Gate[J]. Chin. Phys. Lett., 2017, 34(10): 124201
[9] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 124201
[10] Dong-Feng Lin, Bao-Gang Quan, Qiu-Lin Zhang, Dong-Xiang Zhang, Xin Xu, Jia-Sheng Ye, Yan Zhang, Dong-Mei Li, Qing-Bo Meng, Li Pan, Guo-Zhen Yang. Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics[J]. Chin. Phys. Lett., 2016, 33(09): 124201
[11] Ya-Ming Xie, Chang-Yu Liu, Ze-Jun Ding, Zhi-Guo Wang. Optimization Design of Electromagnetic Nihility Nanoparticles[J]. Chin. Phys. Lett., 2016, 33(09): 124201
[12] Yang Miao, Can Wu, Ning Wang, Jia-Qi You. Angle Compensation and Asymmetry Effect of Light Diffracted by Millimeter Liquid Surface Slosh Wave[J]. Chin. Phys. Lett., 2016, 33(07): 124201
[13] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 124201
[14] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 124201
[15] HUANG Hui-Ling, CHEN Zi-Yang, SUN Cun-Zhi, LIU Ji-Lin, PU Ji-Xiong. Light Focusing through Scattering Media by Particle Swarm Optimization[J]. Chin. Phys. Lett., 2015, 32(10): 124201
Full text