Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 120501    DOI: 10.1088/0256-307X/37/12/120501
Active Thermal Wave Cloak
Liu-Jun Xu* and Ji-Ping Huang*
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
Cite this article:   
Liu-Jun Xu and Ji-Ping Huang 2020 Chin. Phys. Lett. 37 120501
Download: PDF(2531KB)   PDF(mobile)(2514KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Active metamaterials have shown huge advantages to control electromagnetic and acoustic waves. However, how to use active metamaterials to control thermal waves has not been explored, though thermal waves are significant in various fields. To address the problem, here we report an active scheme for thermal wave cloaks. The thermal waves are based on conduction and convection, which are dominated by the Fourier and Darcy laws, respectively. By calculating the propagation of thermal waves in a free space, we can derive the global temperature and pressure distributions. We then apply these calculation results to actively control the boundary temperature and pressure, and active thermal wave cloaks can be obtained. Compared with existing passive schemes to control thermal waves, the present active scheme is more flexible for switching on/off and changing geometries. This work provides active and controllable components to thermal wave cloaks, which can be further used to design more active thermal wave metamaterials.
Received: 02 October 2020      Published: 08 December 2020
PACS:  05.70.-a (Thermodynamics)  
  44.10.+i (Heat conduction)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11725521 and 12035004), and the Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1414700).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Liu-Jun Xu and Ji-Ping Huang
[1]Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Berlin: Springer)
[2] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[3] Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103
[4] Guenneau S, Petiteau D, Zerrad M, Amra C and Puvirajesinghe T 2015 AIP Adv. 5 053404
[5] Dai G L, Shang J and Huang J P 2018 Phys. Rev. E 97 022129
[6] Li Y, Zhu K J, Peng Y G, Li W, Yang T Z, Xu H X, Chen H, Zhu X F, Fan S H and Qiu C W 2019 Nat. Mater. 18 48
[7] Yang F B, Xu L J and Huang J P 2019 ES Energy & Environ. 6 45
[8] Yeung W S, Mai V P and Yang R J 2020 Phys. Rev. Appl. 13 064030
[9] Xu L J and Huang J P 2020 Sci. Chin. Phys. Mech. & Astron. 63 228711
[10] Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273
[11] Xu L J and Huang J P 2019 Phys. Rev. Appl. 12 044048
[12] Peng Y G, Li Y, Cao P C, Zhu X F and Qiu C W 2020 Adv. Funct. Mater. 30 2002061
[13] Xu L J, Dai G L and Huang J P 2020 Phys. Rev. Appl. 13 024063
[14] Xu L J, Yang S, Dai G L and Huang J P 2020 ES Energy & Environ. 7 65
[15] Wang J, Yang F B, Xu L J and Huang J P 2020 Phys. Rev. Appl. 14 014008
[16] Yang S, Xu L J, Dai G L and Huang J P 2020 J. Appl. Phys. 128 095102
[17] Farhat M, Chen P Y, Bagci H, Amra C, Guenneau S and Alù A 2015 Sci. Rep. 5 9876
[18] Farhat M, Guenneau S, Chen P Y, Alù A and Salama K N 2019 Phys. Rev. Appl. 11 044089
[19] Xu L J and Huang J P 2020 Int. J. Heat Mass Transfer 159 120133
[20] Vasquez F G, Milton G W and Onofrei D 2009 Phys. Rev. Lett. 103 073901
[21] Selvanayagam M and Eleftheriades G V 2013 Phys. Rev. X 3 041011
[22] Kord A, Sounas D L and Alù A 2018 Phys. Rev. Appl. 10 054040
[23] Vasquez F G, Milton G W and Onofrei D 2011 Wave Motion 48 515
[24] Ning L, Wang Y Z and Wang Y S 2020 Int. J. Solids Struct. 202 126
[25] Kerferd B, Eggler D, Karimi M and Kessissoglou N 2020 J. Sound Vib. 479 115400
[26] Urzhumov Y A and Smith D R 2012 Phys. Rev. E 86 056313
[27] Culver D and Urzhumov Y 2017 Phys. Rev. E 96 063107
[28] Ma Q, Mei Z L, Zhu S K, Jin T Y and Cui T J 2013 Phys. Rev. Lett. 111 173901
[29] Lan C W, Bi K, Gao Z H, Li B and Zhou J 2016 Appl. Phys. Lett. 109 201903
[30] Chen T H, Zheng B, Yang Y H, Shen L, Wang Z J, Gao F, Li E P, Luo Y, Cui T J and Chen H S 2019 Light: Sci. & Appl. 8 30
[31] Mach-Batlle R, Parra A, Laut S, Del-Valle N, Navau C and Sanchez A 2018 Phys. Rev. Appl. 9 034007
[32] Jiang W, Ma Y G and He S L 2018 Phys. Rev. Appl. 9 054041
[33] Dai X and Jiang J C 2020 AIP Adv. 10 025211
[34] Nguyen D M, Xu H Y, Zhang Y M and Zhang B L 2015 Appl. Phys. Lett. 107 121901
[35] Guo J and Qu Z G 2018 Int. J. Heat Mass Transfer 127 1212
[36] Xu L J, Yang S and Huang J P 2019 Phys. Rev. E 100 062108
[37] Xu L J, Yang S and Huang J P 2020 Europhys. Lett. 131 24002
[38] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J L, Alù A, Fan S H and Qiu C W 2019 Science 364 170
[39]Cao P C, Li Y, Peng Y G, Qiu C W and Zhu X F 2020 ES Energy & Environ. 7 48
[40] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502
[41] Xu L J and Huang J P 2020 Appl. Phys. Lett. 117 011905
[42]Bear J and Corapcioglu M Y 1984 Fundamentals of Transport Phenomena in Porous Media (Berlin: Springer)
[43] Urzhumov Y A and Smith D R 2011 Phys. Rev. Lett. 107 074501
[44] Park J, Youn J R and Song Y S 2019 Phys. Rev. Lett. 123 074502
[45] Park J, Youn J R and Song Y S 2019 Phys. Rev. Appl. 12 061002
[46] Joseph D D and Preziosi L 1989 Rev. Mod. Phys. 61 41
[47] Nie B D and Cao B Y 2019 Int. J. Heat Mass Transfer 135 974
[48] Gandolfi M, Benetti G, Glorieux C, Giannetti C and Banfi F 2019 Int. J. Heat Mass Transfer 143 118553
[49] Simoncelli M, Marzari N and Cepellotti A 2020 Phys. Rev. X 10 011019
[50] Domenico M D, Jou D and Sellitto A 2020 Int. J. Heat Mass Transfer 156 119888
[51] Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa K and Shiomi J 2020 Phys. Rev. X 10 021050
[52] Orth T, Netzelmann U and Pelzl J 1988 Appl. Phys. Lett. 53 1979
[53] Busse G, Wu D and Karpen W 1992 J. Appl. Phys. 71 3962
[54] Mulaveesala R and Tuli S 2006 Appl. Phys. Lett. 89 191913
[55] Mulaveesala R and Tuli S 2008 AIP Conf. Proc. 1004 15
[56] Tuli S and Chatterjee K 2012 AIP Conf. Proc. 1430 523
[57] Sha W, Zhao Y T, Gao L, Xiao M and Hu R 2020 J. Appl. Phys. 128 045106
[58] Hu R, Huang S Y, Wang M, Luo X B, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849
[59] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237
[60] Hu R, Huang S Y, Wang M, Zhou L L, Peng X Y and Luo X B 2018 Phys. Rev. Appl. 10 054032
Related articles from Frontiers Journals
[1] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 120501
[2] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 120501
[3] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 120501
[4] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 120501
[5] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 120501
[6] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 120501
[7] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 120501
[8] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 120501
[9] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 120501
[10] LIU Hui, HOU De-Fu, LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2007, 24(5): 120501
[11] CHEN Jiang-Xing, JIAO Zheng-Kuan. Mode-Locking Behaviour in Driven Colloids with Random Pinning[J]. Chin. Phys. Lett., 2007, 24(4): 120501
[12] SUN Qiang, ZHENG Hai-Fei. Liquid Water Structure from Anomalous Density under Ambient Condition[J]. Chin. Phys. Lett., 2006, 23(11): 120501
[13] WANG Bao-Quan, WANG Yu-Peng. Exclusion Statistics: a Generalized Description[J]. Chin. Phys. Lett., 2005, 22(4): 120501
[14] LI Zeng-Hua, ZUO Wei, LU Guang-Cheng, YONG Gao-Chan. Finite-Temperature Equation of State with Three-Body Force Correlations[J]. Chin. Phys. Lett., 2004, 21(2): 120501
[15] ZHOU Shi-Qi. Functional Counterpart of Lagrangian Theorem and Perturbative Density Functional Theory: a Forgotten Idea[J]. Chin. Phys. Lett., 2002, 19(9): 120501
Full text