Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 119601    DOI: 10.1088/0256-307X/37/11/119601
Comparison of Proton Shower Developments in the BGO Calorimeter of the Dark Matter Particle Explorer between GEANT4 and FLUKA Simulations
Wei Jiang1,2, Chuan Yue1*, Ming-Yang Cui1*, Xiang Li1, Qiang Yuan1,2, Francesca Alemanno3,4, Paolo Bernardini5,6, Giovanni Catanzani7,8, Zhan-Fang Chen1,2, Ivan De Mitri3,4, Tie-Kuang Dong1, Giacinto Donvito9, David Francois Droz10, Piergiorgio Fusco9,11, Fabio Gargano9, Dong-Ya Guo12, Dimitrios Kyratzis3,4, Shi-Jun Lei1, Yang Liu1, Francesco Loparco9,11, Peng-Xiong Ma1,2, Giovanni Marsella6,12, Mario Nicola Mazziotta9, Xu Pan1,2, Wen-Xi Peng13, Antonio Surdo6, Andrii Tykhonov10, Yi-Yeng Wei14, Yu-Hong Yu15, Jing-Jing Zang1, Ya-Peng Zhang15, Yong-Jie Zhang15, and Yun-Long Zhang14
1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
2School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
3Gran Sasso Science Institute (GSSI), Viale F. Crispi 7, I-67100, L'Aquila, Italy
4Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Via G.Acitelli 22, I-67100, Assergi, L'Aquila, Italy
5Dipartimento di Matematica e Fisica E. De Giorgi, Università del Salento, I-73100 Lecce, Italy
6Istituto Nazionale di Fisica Nucleare (INFN)–Sezione di Lecce, I-73100 Lecce, Italy
7INFN Section of Perugia, I-06100 Perugia, Italy
8University of Perugia, I-06100 Perugia, Italy
9Istituto Nazionale di Fisica Nucleare (INFN)–Sezione di Bari, I-70125, Bari, Italy
10Department of Nuclear and Particle Physics, University of Geneva, CH-1211, Switzerland
11Dipartimento Interateneo “M. Merlin” dell'Università degli Studi di Bari e del Politecnico di Bari, I-70125, Bari, Italy
12Dipartimento di Fisica e Chimica “E. Segrè”, via delle Scienze Edificio 17, Università Degli Studi di Palermo, I-90128, Palermo, Italy
13Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
14State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
15Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Cite this article:   
Wei Jiang, Chuan Yue, Ming-Yang Cui et al  2020 Chin. Phys. Lett. 37 119601
Download: PDF(1020KB)   PDF(mobile)(1016KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The DArk Matter Particle Explorer (DAMPE) is a satellite-borne detector for high-energy cosmic rays and $\gamma$-rays. To fully understand the detector performance and obtain reliable physical results, extensive simulations of the detector are necessary. The simulations are particularly important for the data analysis of cosmic ray nuclei, which relies closely on the hadronic and nuclear interactions of particles in the detector material. Widely adopted simulation softwares include the GEANT4 and FLUKA, both of which have been implemented for the DAMPE simulation tool. Here we describe the simulation tool of DAMPE and compare the results of proton shower properties in the calorimeter from the two simulation softwares. Such a comparison gives an estimate of the most significant uncertainties of our proton spectral analysis.
Received: 21 July 2020      Published: 08 November 2020
PACS:  96.50.S- (Cosmic rays)  
  13.85.Tp (Cosmic-ray interactions)  
  13.85.-t (Hadron-induced high-and super-high-energy interactions (energy > 10 GeV))  
  95.55.-n (Astronomical and space-research instrumentation)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0400200), the National Natural Science Foundation of China (Grant Nos. 11722328, 11773085, U1738127, U1738138, U1738205, U1738207, and 11851305), the 100 Talents Program of Chinese Academy of Sciences, the Youth Innovation Promotion Association CAS, and the Program for Innovative Talents and Entrepreneur in Jiangsu. In Europe the activities are supported by the Swiss National Science Foundation (SNSF), Switzerland, and the National Institute for Nuclear Physics (INFN), Italy.
URL:       OR
[1] Adriani O et al. (PAMELA) 2011 Science 332 69
[2] Aguilar M et al. (AMS) 2015 Phys. Rev. Lett. 114 171103
[3] Aguilar M et al. (AMS) 2017 Phys. Rev. Lett. 119 251101
[4] Tanabashi M et al. (Particle Data Group) 2018 Phys. Rev. D 98 030001
[5] Torii S and Marrocchesi P S (CALET collaboration) 2019 Adv. Space Res. 64 2531
[6] Atkin E et al. 2015 EPJ Web Conf. 105 01002
[7]Chang J 2014 Chin. J. Space Sci. 34 550 (in Chinese)
[8] Chang J et al. (DAMPE) 2017 Astropart. Phys. 95 6
[9] Kang S et al. 2019 Adv. Space Res. 64 2564
[10] Yuan Q and Feng L 2018 Sci. Chin. Phys. Mech. Astron. 61 101002
[11] Yu Y et al. 2017 Astropart. Phys. 94 1
[12] Azzarello P et al. 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 831 378
[13] Zhang Z et al. 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 836 98
[14] Huang Y Y, Ma T, Yue C, Zhang Y, Chang J, Dong T K and Zhang Y Q 2020 Res. Astron. Astrophys. 20 153
[15] Ambrosi G et al. (DAMPE) 2019 Astropart. Phys. 106 18
[16] Ambrosi G et al. (DAMPE) 2017 Nature 552 63
[17] An Q et al. (DAMPE) 2019 Sci. Adv. 5 eaax3793
[18] Agostinelli S, Allison J, Amako K et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250
[19]Ferrari A, Sala P, Fassö A and Ranft J 2005 FLUKA: A Multi-particle Transport Code CERN Yellow Rep.: Monographs (Geneva: CERN) ISBN 9290832606
[20] Böhlen T T, Cerutti F, Chin M P W et al. (FLUKA Collaboration) 2014 Nucl. Data Sheets 120 211
[21] Bolshakova A, Boyko I, Chelkov G et al. 2010 Eur. Phys. J. C 70 543
[22] Allison J, Amako K, Apostolakis J, Arce P et al. 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 835 186
[23] Andersson B, Gustafson G and Nilsson-Almqvist B 1987 Nucl. Phys. B 281 289
[24] Nilsson-Almqvist B and Stenlund E 1987 Comput. Phys. Commun. 43 387
[25]GEANT4-Collaboration Geant4 physics list guide
[26] Roesler S, Engel R and Ranft J 2001 Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications (Berlin: Springer) pp 1033–1038
[27] Chytracek R, Mccormick J, Pokorski W and Santin G 2006 IEEE Trans. Nucl. Sci. 53 2892
[28] Wang C et al. 2017 Chin. Phys. C 41 106201
[29]Emmett M B 1975 Morse monte carlo radiation transport code system Tech. Rep. ORNL-4972 Oak Ridge National Laboratory, USA
[30]GEANT4-Collaboration Geant4 physics reference manual
[31] Zhang Y Q, Guo J H, Liu Y et al. 2019 Res. Astron. Astrophys. 19 123
[32] D'Agostini G 1995 Nucl. Instrum. Methods Phys. Res. Sect. A 362 487
Related articles from Frontiers Journals
[1] Mohsin Saeed, Min Zha, Zhen Cao. Simulation of the Galactic Cosmic Ray Shadow of the Sun[J]. Chin. Phys. Lett., 2017, 34(12): 119601
Full text