Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 117101    DOI: 10.1088/0256-307X/37/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping
Yu Suo1,2†, Hao Yang1†, and Jiyong Fu1,3,4*
1Department of Physics, Qufu Normal University, Qufu 273165, China
2Department of Physics, Jining University, Qufu 273155, China
3Instituto de Fı́sica, Universidade de Brası́lia, Brası́lia-DF 70919-970, Brazil
4Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Cite this article:   
Yu Suo, Hao Yang, and Jiyong Fu 2020 Chin. Phys. Lett. 37 117101
Download: PDF(897KB)   PDF(mobile)(1230KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the Rashba and Dressehaus spin–orbit (SO) couplings in an ordinary GaAs/AlGaAs asymmetric double well, which favors the electron occupancy of three subbands $\nu=1,2,3$. Resorting to an external gate, which adjusts the electron occupancy and the well symmetry, we demonstrate distinct three-level SO control of both Rashba ($\alpha_\nu$) and Dresselhaus ($\beta_\nu$) {intraband} terms. Remarkably, as the gate varies, the first-subband SO parameters $\alpha_1$ and $\beta_1$ comply with the usual linear behavior, while $\alpha_2$ ($\beta_2$) and $\alpha_3$ ($\beta_3$) respectively for the second and third subbands interchange the values, triggered by a gate controlled band swapping. This provides a pathway towards fascinating selective SO control in spintronic applications. Moreover, we observe that the {interband} Rashba ($\eta_{\mu\nu}$) and Dresselhaus ($\varGamma_{\mu\nu}$) terms also exhibit contrasting gate dependence. Our results should stimulate experiments probing SO couplings in multi-subband wells and adopting relevant SO features in future spintronic devices.
Received: 01 July 2020      Published: 08 November 2020
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  81.07.St (Quantum wells)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11874236 and 11004120), the QFNU Research Fund, and the Research Program of JNXY.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/117101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/117101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Suo
Hao Yang
and Jiyong Fu
[1]Awschalom D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (New York: Springer)
[2] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[3] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
[4] Walser M P, Reichl C, Wegscheider W and Salis G 2012 Nat. Phys. 8 757
[5] Bentmann H, Abdelouahed S, Mulazzi M, Henk J and Reinert F 2012 Phys. Rev. Lett. 108 196801
[6] Noguchi K, Kuroda R, Yaji K, Kobayashi K, Sakano M, Harasawa A, Kondo T, Komori F and Shin S 2017 Phys. Rev. B 95 041111(R)
[7] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[8] Lutchyn R M, Sau J D and Sarma S D 2010 Phys. Rev. Lett. 105 077001
[9] Oreg G, Refael Y and Oppen F V 2010 Phys. Rev. Lett. 105 177002
[10] Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[11] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[12] Fu J Y, Bezerra A and Qu F Y 2018 Phys. Rev. B 97 115425
[13] Fu J Y, Cruz J M R and Qu F Y 2019 Appl. Phys. Lett. 115 082101
[14] Fu J Y, Penteado P H, Hachiya M O, Loss D and Egues J C 2016 Phys. Rev. Lett. 117 226401
[15] Dettwiler F, Fu J Y, Mack S, Weigele P J, Egues J C, Awschalom D D and Zumbühl D M 2017 Phys. Rev. X 7 031010
[16] Weigele P J, Marinescu D C, Dettwiler F, Fu J Y, Mack S and Egues J C 2020 Phys. Rev. B 101 035414
[17]Bychkov Y A and Rashba E I 1984 JETP Lett. 39 78
[18] Dresselhaus G 1955 Phys. Rev. 100 580
[19] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[20] Studer M, Salis G, Ensslin K, Driscoll D C and Gossard A C 2009 Phys. Rev. Lett. 103 027201
[21] Sasaki A, Nonaka S, Kunihashi Y, Kohda M, Bauernfeind T, Dollinger T, Richter K and Nitta J 2014 Nat. Nanotechnol. 9 703
[22] Walser M P, Siegenthaler U, Lechner V, Schuh D, Ganichev S D, Wegscheider W and Salis G 2012 Phys. Rev. B 86 195309
[23] Fu J Y and Egues J C 2015 Phys. Rev. B 91 075408
[24] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[25] Chuang P, Ho S, Smith L W, Sfigakis F, Pepper M, Chen C, Fan J, Griffiths J P, Farrer I, Beere H E, Jones G A C, Ritchie D A and Chen T 2015 Nat. Nanotechnol. 10 35
[26] Bernevig B, Orenstein J and Zhang S C 2006 Phys. Rev. Lett. 97 236601
[27] Schliemann J, Egues J C and Loss D 2003 Phys. Rev. Lett. 90 146801
[28]Xia J B, Ge W K and Chang K 2012 Semiconductor Spintronics (Beijing: Science Press) (in Chinese)
[29] Hu C M, Nitta J, Akazaki T, Takayanagi H, Osaka J, Pfeffer P and Zawadzki W 1999 Phys. Rev. B 60 7736
[30] Hu C M, Nitta J, Akazaki T, Takayanagi H, Osaka J, Pfeffer P and Zawadzki W 2000 Physica E 6 767
[31] Hernandez F G G, Nunes L, Gusev G and Bakarov A 2013 Phys. Rev. B 88 161305(R)
[32] de Andrada e Silva E A, La Rocca G C and Bassani F 1997 Phys. Rev. B 55 16293
[33] Calsaverini R S, Bernardes E, Egues J C and Loss D 2008 Phys. Rev. B 78 155313
[34] Derkacz L and Jakóbczyk L 2006 Phys. Rev. A 74 032313
[35] Sun H, Gong S Q, Niu Y P, Jin S Q, Li R X and Xu Z Z 2006 Phys. Rev. B 74 155314
[36] Joshi A and Xiao M 2003 Phys. Rev. Lett. 91 143904
[37] Kane E Q 1957 J. Phys. Chem. Solids 1 249
[38]Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (New York: Springer)
[39] Wang W, Li X M and Fu J Y 2015 J. Magn. Magn. Mater. 411 84
[40] Marzin J V and Gérard J M 1989 Phys. Rev. Lett. 62 2172
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 117101
[2] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 117101
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 117101
[4] Xin Gao, Jian Sun, Xiangang Wan, and Gang Li. Competition of Quantum Anomalous Hall States and Charge Density Wave in a Correlated Topological Model[J]. Chin. Phys. Lett., 2022, 39(7): 117101
[5] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 117101
[6] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 117101
[7] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 117101
[8] Yiqing Hao, Yiqing Gu, Yimeng Gu, Erxi Feng, Huibo Cao, Songxue Chi, Hua Wu, and Jun Zhao. Magnetic Order and Its Interplay with Structure Phase Transition in van der Waals Ferromagnet VI$_{3}$[J]. Chin. Phys. Lett., 2021, 38(9): 117101
[9] Wei-Feng Zhuang, Yue-Xin Huang, and Ming Gong. Angular Momentum Josephson Effect between Two Isolated Condensates[J]. Chin. Phys. Lett., 2021, 38(6): 117101
[10] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 117101
[11] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 117101
[12] Jin-Hua Wang, Ya-Min Quan, Da-Yong Liu, Liang-Jian Zou. Ferromagnetism in Layered Metallic Fe$_{1/4}$TaS$_{2}$ in the Presence of Conventional and Dirac Carriers[J]. Chin. Phys. Lett., 2020, 37(1): 117101
[13] Sailong Ju, Maokun Wu, Hao Yang, Naizhou Wang, Yingying Zhang, Peng Wu, Pengdong Wang, Bo Zhang, Kejun Mu, Yaoyi Li, Dandan Guan, Dong Qian, Feng Lu, Dayong Liu, Wei-Hua Wang, Xianhui Chen, Zhe Sun. Band Structures of Ultrathin Bi(110) Films on Black Phosphorus Substrates Using Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 117101
[14] PANG Fei. Magneto-Transport Properties of Insulating Bulk States in Bi(111) Films[J]. Chin. Phys. Lett., 2015, 32(02): 117101
[15] SUN Jin-Fang, CHENG Fang. Tuning Out-of-Plane Spin Polarization Using in-Plane Magnetic Fields in a Quasi-One-Dimensional Quantum Wire Embedded in (110) Plane[J]. Chin. Phys. Lett., 2014, 31(03): 117101
Viewed
Full text


Abstract