Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 110302    DOI: 10.1088/0256-307X/37/11/110302
GENERAL |
Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States
A-Long Zhou , Dong Wang*, Xiao-Gang Fan , Fei Ming , and Liu Ye*
School of Physics & Material Science, Anhui University, Hefei 230601, China
Cite this article:   
A-Long Zhou , Dong Wang, Xiao-Gang Fan  et al  2020 Chin. Phys. Lett. 37 110302
Download: PDF(2049KB)   PDF(mobile)(2045KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Concurrence is viewed as the most commonly approach for quantifying entanglement of two-qubit states, while intrinsic concurrence contains concurrence of four pure states consisting of a special pure state ensemble concerning an arbitrary two-qubit state. Thus, a natural question arises: Whether there is a specified relation between them. We firstly examine the relation between concurrence and intrinsic concurrence for the maximally nonlocal mixed state under a special unitary operation, which is not yet rigorously proved. In order to obtain a general result, we investigate the relation between concurrence and intrinsic concurrence using randomly generated two-qubit states, and derive an inequality relation between them. Finally, we take into account the relation between concurrence and intrinsic concurrence in open systems, and reveal the ratio of the two quantum resources, which is only correlated with the experiencing channels.
Received: 08 July 2020      Published: 08 November 2020
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Supported by the National Science Foundation of China (Grant Nos. 12075001, 61601002 and 11575001), the Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), and the Fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/110302       OR      http://cpl.iphy.ac.cn/Y2020/V37/I11/110302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A-Long Zhou 
Dong Wang
Xiao-Gang Fan 
Fei Ming 
and Liu Ye
[1]Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762–764 1
[3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[5] Schrödinger E 1935 Naturwissenschaften 23 807
[6] Werner R F 1989 Phys. Rev. A 40 4277
[7] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[8] Wang X B 2013 Phys. Rev. A 87 012320
[9] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[10] Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[11] Guillaume V A, Eduardo M M and Achim K 2016 Phys. Rev. A 93 022308
[12] Pati A K 2000 Phys. Rev. A 63 014302
[13] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[14] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[15] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[16] V V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[17] Eisert J and Plenio M B 1999 J. Mod. Opt. 46 145
[18] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[19] Bennett C H, Divineczo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[20] Piani M 2009 Phys. Rev. Lett. 103 160504
[21] Miranowicz A and Grudka A 2004 Phys. Rev. A 70 032326
[22] Audenaert K, Verstraete F and Moor B D 2001 Phys. Rev. A 64 052304
[23] Badziag P, Deuar P, Horodecki M, Horodecki P and Horodecki R 2002 J. Mod. Opt. 49 1289
[24] Fan X G, Sun W Y, Ding Z Y, Ming F, Yang H, Wang D and Ye L 2019 New J. Phys. 21 093053
[25] Bruschi D E, Sabín C and Paraoanu G S 2017 Phys. Rev. A 95 062324
[26] Barnum H, Linden N 2001 J. Phys. A 34 6787
[27] Kwiat G P, Mattle K, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 4337
[28] Verstraete F, Audenaert K and Moor B D 2001 Phys. Rev. A 64 012316
[29] Svozilík J, Vallés A, Peřina J and Torres J P 2015 Phys. Rev. Lett. 115 220501
[30] Yu T and Eberly J H 2009 Science 323 598
[31] Hu M L and Fan H 2015 Phys. Rev. A 91 052311
[32] Wang J C and Jing J L 2010 Phys. Rev. A 82 032324
[33] Aaronson B, Franco R L and Adesso G 2013 Phys. Rev. A 88 012120
[34]Gardiner C W and Zoller P 2004 Quantum Noise 3rd edn (Berlin: Springer)
[35]Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Clarendon Press)
[36] Zhou A L, Wang D, Ming F, Shi W N, Yang J and Ye L 2020 Eur. Phys. J. Plus 135 489
[37] Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D and Ye L 2019 Front. Phys. 14 31601
[38] Chen M N, Wang D and Ye L 2019 Phys. Lett. A 383 977
[39] Yao Y B, Wang D, Ming F and Ye L 2020 J. Phys. B: At. Mol. Opt. Phys. 53 035501
[40] Ming F, Wang D, Fan X G, Shi W N, Ye L and Chen J L 2020 Phys. Rev. A 102 012206
Related articles from Frontiers Journals
[1] Tianqi Dou , Jipeng Wang , Zhenhua Li , Wenxiu Qu , Shunyu Yang , Zhongqi Sun , Fen Zhou , Yanxin Han , Yuqing Huang , and Haiqiang Ma. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States[J]. Chin. Phys. Lett., 2020, 37(11): 110302
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 110302
[3] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 110302
[4] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 110302
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 110302
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 110302
[7] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 110302
[8] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 110302
[9] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 110302
[10] P.-Y. Hou, L. He, F. Wang, X.-Z. Huang, W.-G. Zhang, X.-L. Ouyang, X. Wang, W.-Q. Lian, X.-Y. Chang, L.-M. Duan. Experimental Hamiltonian Learning of an 11-Qubit Solid-State Quantum Spin Register[J]. Chin. Phys. Lett., 2019, 36(10): 110302
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 110302
[12] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 110302
[13] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 110302
[14] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 110302
[15] Li Chen, Dong Yan, Li-Jun Song, Shou Zhang. Dynamics of Quantum Fisher Information in Homodyne-Mediated Feedback Control[J]. Chin. Phys. Lett., 2019, 36(3): 110302
Viewed
Full text


Abstract